Name:

HW 5: Chapter 5

1. The Neutron Star vs. Jean Luc Picard

The starship Enterprise, under the command of Jean Luc Picard, orbits the Sun at $r_1=1.50\times 10^{11}~m$ with an orbital speed $v_1=29,\!800~m/s$. Suddenly a Borg ship arrives and tests a new weapon on the Sun, turning it into a neutron star with the same mass. The Enterprise is forced into a new circular orbit just 30~km from the neutron star's center.

Find the new orbital speed v_2 , and determine how many times faster it is than the original v_1 .

2. Gus and Goliath

Gus mistakes a tree that is 35 m away for a Giant and decides to use his sling to save his neighborhood. The sling is 0.80 m long and just before release the rock is moving with a

constant angular speed of $50 \ rad/s$. The rock is released $2 \ m$ above the ground and its initial velocity is completely horizontal.

- (a). Find the angular speed of the rock before it is released.
- (b). What is the centripetal acceleration of the rock before it is released?
- (c). How long does it take for the rock to hit the ground after it is released?
- (d). Does the rock hit the tree?

3. Safety is Priority #1

A highway engineer is designing a frictionless banked curve for a high-speed exit ramp. The curve has a radius of $r=120\ m$, and cars are expected to travel safely through it at $v=28\ m/s$ without relying on friction.

- (a). What should the angle θ of the road be so that a car can make the turn in uniform circular motion without sliding?
- (b). What would happen if the car tried to go around this same banked curve:
 - $v < 28 \, m/s$
 - $v > 28 \, m/s$

4. The Amazing Gunjito

The Amazing Gunjito is an Orangutan in Borneo who frequently swings from a rope near popular tourist paths with his hand outstretched, demanding peanuts. Gunjito has a mass of 75 kg and swings from a rope that is 7m long. He passes through the lowest point at 3.0 m/s.

- (a) Draw a free body diagram, assume uniform circular motion, and find the tension in the rope when Gunjito is at the lowest point.
- (b) In part (a) you calculated the tension in the rope at the bottom of Gunjito's swing. Suppose we now want to calculate the tension at a different point in the swing, such as when the rope makes a 45-degree angle with the vertical. Would the same approach from part (a) still apply? Why or why not?

