Name:	

HW 7: Chapter 7

1. Discrete rocket Bursts

A rocket drifts at rest in deep space. Its total mass (structure + fuel) is $M_0=2000\ kg$. The pilot can fire identical "bursts" that eject $m_f=5.0\ kg$ of propellant at exhaust speed $u=2500\ m/s$ relative to the rocket. Each burst is short enough to treat as impulsive.

- a. The pilot fires one burst straight backwards (so thrust points $+\hat{x}$). What speed does the rocket gain?
- b. Immediately after, the pilot yaws and fires a second identical burst with thrust 30^0 above $+\hat{x}$. What is the rocket's new speed and heading?
- c. If the bursts lasts $\Delta t = 0.50 \, s$, estimate the average thrust during the second burst and the rocket's average acceleration during that burst.

2. Head-on Elastic Collision Between Two Masses

The figure shows a head-on elastic collision between two balls. No external forces act on the balls. What must \vec{v}_{01} be such that m_2 is at rest after the collision?

- a. Write a general equation for v_{01} in terms of v_{02} , m_1 , m_2 .
- b. If $m_1=5\ kg$, and $m_2=50\ kg$, and $v_{02}=5\ m/s$, what is v_{01} and v_{f1} ?

3. When Objects Collide!

Two objects undergo an elastic collision. Object 1 $(m_1=5\ kg)$ is initially moving along with an unknown initial velocity $\vec{v}_{10}=(v_{10x},v_{20x})$ and object 2 $(m_1=3\ kg)$ moves along the x-axis with an unknown velocity $\vec{v}_{20}=(v_{20x},0)$. After the collision, object 1's velocity is $\vec{v}_{1f}=(1,2)\ m/s$ and object 2, $v_{2f}=(1,-2)\ m/s$. Calculate the unknown initial velocities v_{10x},v_{10y},v_{20x} .

(Hint: You can use conservation of linear momentum or conservation of center-of-mass velocity along with the conservation of kinetic energy)

