
The Physical Geometry of Spacetime

General Relativity Lecture Notes

Jericho Cain, PhD

Fall 2025



2

Contents

Preface: From Pure Geometry to Spacetime 5

2 Spacetime as a Differentiable Manifold 6

2.1 Manifolds and Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Smooth Maps Between Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Tangent Vectors and Tangent Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 The Differential and Pushforward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Covectors and the Pullback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Tensors and Tensor Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 The Metric Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.8 Orientation and Volume Forms (Optional) . . . . . . . . . . . . . . . . . . . . . . . . 29

2.9 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 Curvature 39

3.1 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Derivative Operators and Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Curvature and Parallel Transport Around a Loop . . . . . . . . . . . . . . . . 55

3.4 Geometric Meaning of Riemann and Ricci Curvature . . . . . . . . . . . . . . . . . . 60

3.4.1 Riemann Curvature Acting on Vectors and Tensors . . . . . . . . . . . . . . . 60



3.4.2 Why Contracting Riemann Yields the Ricci Tensor . . . . . . . . . . . . . . . 61

3.4.3 Ricci Curvature and the Volume of Geodesic Balls . . . . . . . . . . . . . . . 62

3.4.4 Index Interpretation Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Definition via Parallel Transport . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.2 Coordinate Expression of the Geodesic Equation . . . . . . . . . . . . . . . . 66

3.5.3 The Exponential Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.4 Riemannian Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.5.5 Gaussian Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5.6 Extremizing the Length Functional . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.7 Geodesic Deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Methods for Computing Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6.1 Coordinate Component Method . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.6.2 Orthonormal Basis (Tetrad) Methods . . . . . . . . . . . . . . . . . . . . . . 79

4 Einstein’s Equations 84

4.1 The Geometry of Space in Prerelativity Physics: General and Special Covariance . . 84

4.2 Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Overview and Inertial Frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.2 Geometry of Minkowski Spacetime . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.3 Stress–Energy and Matter in Special Relativity . . . . . . . . . . . . . . . . . 91

4.2.4 Fields in Special Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.3.1 From Special Relativity to a New Theory of Gravity . . . . . . . . . . . . . . 98

4.3.2 The Equivalence Principle and the Failure of Background Observers . . . . . 99

4.3.3 The Central Hypothesis: Gravity is Curved Spacetime . . . . . . . . . . . . . 100

3



4.3.4 Why Spacetime Need Not Be R4: Lorentz Metrics on General Manifolds . . . 101

4.3.5 The Principles Governing Physics in Curved Spacetime . . . . . . . . . . . . 102

4.3.6 Motion, 4–Momentum, and Forces in Curved Spacetime . . . . . . . . . . . . 103

4.3.7 Scalar Fields and Maxwell Fields in Curved Spacetime . . . . . . . . . . . . . 105

4.3.8 From Tidal Forces to Einstein’s Equation . . . . . . . . . . . . . . . . . . . . 107

4.3.9 Remarks on the Nature of Einstein’s Equation . . . . . . . . . . . . . . . . . 109

4.4 Linearized Gravity: The Newtonian Limit and Gravitational Radiation . . . . . . . . 110

4.4.1 The Linearized Einstein Equation . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.4.2 The Newtonian Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.3 Gravitational Radiation (Vacuum) . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.4 Gravitational Radiation (Sourced) . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Homogeneous, Isotropic, Cosmology 142

5.1 Homogeneity and Isotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Appendix: Einstein Index Notation Cheat Sheet . . . . . . . . . . . . . . . . . . . . . . . 148

4



5

Preface: From Pure Geometry to
Spacetime

Modern general relativity stands at the crossroads of geometry and physics. Its equations describe
how the geometry of spacetime determines the motion of matter, and how matter in turn shapes
geometry. To understand this interplay, one must first learn the mathematical language that
expresses geometry precisely: the theory of smooth manifolds.

This language provides the setting for all that follows. A spacetime is modeled as a smooth four-
dimensional manifold M , and the objects of physics, fields, momenta, and curvature, are smooth
tensor fields defined on M . The fundamental laws of physics are statements about how these
geometric objects transform and interact under smooth maps between manifolds.

Mathematically, the framework of smooth manifolds is developed in works such as John M. Lee’s
Introduction to Smooth Manifolds, while the physicist’s perspective is presented in Robert M. Wald’s
General Relativity. The two texts share the same geometric foundation, but speak in different
dialects: Lee emphasizes rigor and abstraction, while Wald focuses on physical interpretation and
tensor calculus. The aim of these notes is to bridge the two.

Here we reinterpret the core ideas of differential geometry in the language and intuition of spacetime
physics:

• how tangent spaces become the spaces of physical directions at each event,
• how the differential encodes coordinate transformations and embeddings,
• and how tensor bundles carry the physical quantities that define geometry.

Our goal is not to replace mathematical rigor with physical intuition, but to reveal the unity between
them. By translating the mathematics of smooth manifolds into the language of general relativity,
we arrive at a single coherent picture: spacetime as a geometric manifold whose curvature embodies
gravity itself.

Once this foundation is established, the transition to Wald’s Chapter 2 becomes seamless: the
abstract structures of differential geometry reappear as the concrete geometric tools of spacetime
physics, leading naturally toward curvature, dynamics, and the Einstein field equations.
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Chapter 2

Spacetime as a Differentiable Manifold

Imagine a civilization of beings who live in a one–dimensional universe. They can move only forward
or backward along a single line. One day, one of them notices that walking through a certain
region requires more effort—motion feels heavier there. To us, higher–dimensional observers, the
explanation is obvious: the line is bending through space, and the being is walking uphill.

But for the one–dimensional inhabitants, there is no concept of “up” or “curvature.” They cannot
appeal to a surrounding R3 to explain their experience. Their entire physics must be described
within their own line. To do so, they would have to invent a calculus native to their world: a way to
describe change and motion using only information intrinsic to the line itself.

This is precisely what differential geometry accomplishes. We do not imagine that our spacetime
manifold M is embedded in some higher Euclidean space and borrow the derivative from there.
Instead, we construct calculus on M directly. Every point of M carries its own local coordinate
system, its own tangent space, and its own family of derivative operators. Together these local
versions of calculus vary smoothly across M , defining the geometry of spacetime from within.

What feels like “resistance” to the one–dimensional beings is, to us, curvature.

Overview of Chapter 2: Foundations of the Differential Geometry
of Spacetime

In this chapter we construct the mathematical framework that allows spacetime to have a geometry
of its own. Our goal is to define what it means to speak of “direction,” “change,” and “structure”
on a smooth manifold without appealing to any external space.

We begin by formalizing the notion of a tangent vector : an intrinsic way to describe motion or
differentiation at a single point. From this idea we build the tangent space TpM , which collects all
possible directions of change at p, and the cotangent space T ∗

pM , its dual, which contains linear
functionals that act on vectors. These two spaces—the tangent and cotangent spaces—are the
atoms from which all other geometric quantities are assembled.
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With these pieces in hand we define tensors as multilinear maps built from vectors and covectors,
and tensor fields as smooth assignments of such objects to each point of the manifold. Through
them we can express every geometric or physical field that lives on spacetime—scalars, vectors,
metrics, and beyond— within one unified algebraic language.

Finally, we learn to treat tangent vectors as derivations on the space of smooth functions, giving
them the power to express directional derivatives and flows. This interpretation is the seed of calculus
on manifolds: it will allow us, in Chapter 3, to define the covariant derivative, the connection, and
ultimately curvature itself.

2.1 Manifolds and Coordinate Systems

In general relativity, spacetime is modeled as a smooth four-dimensional manifold M . Locally, it can
always be described by a set of coordinates xµ = (x0, x1, x2, x3), but no single coordinate system
covers all of spacetime. Instead, spacetime is assembled from overlapping coordinate patches, each
smoothly related to its neighbors.

Definition 2.1. Smooth Manifold: A topological n-manifold is a topological space M satisfying:

1. M is Hausdorff (any two distinct points have disjoint neighborhoods);
2. M is second-countable (it possesses a countable basis for its topology); and
3. every point p ∈M has a neighborhood U that is homeomorphic to an open subset of Rn.

A smooth structure on M is a collection of charts (Uα, φα) whose domains cover M and whose
transition maps φβ◦φ−1

α are smooth wherever defined. A topological manifold equipped with such a
maximal collection of compatible charts is called a smooth manifold.

Each chart (U,φ) identifies an open subset U ⊂ M with an open region Û = φ(U) ⊂ R4, whose
standard coordinates (x0, x1, x2, x3) serve as the local coordinate system on U . Figure 2.1 illustrates
this structure: each region of the manifold is mapped smoothly into a Euclidean patch, and the
overlaps between charts are connected by smooth transition maps. This framework provides the
mathematical foundation for expressing physics in a coordinate-independent way.

Wald’s perspective. A spacetime is a smooth four-dimensional manifold. Every point p ∈M
lies in some neighborhood U that can be labeled by smooth coordinates xµ, and any smooth
change of coordinates xµ′ = xµ′(x0, x1, x2, x3) preserves the differentiable structure. In Lee’s
terminology, these coordinates arise as the component functions of the chart map φ.

Lee’s formal framework.
• A chart on M is a pair (U,φ), where U ⊆M is open and φ : U → R4 is a homeomorphism

onto its image. The image Û = φ(U) ⊂ R4 represents the local coordinate domain.
• The components of φ(p) define the coordinate functions xµ(p) = πµ ◦ φ(p), so that
φ(p) = (x0(p), x1(p), x2(p), x3(p)).

• The components of φ(p) define the coordinate functions xµ(p) = πµ◦φ(p), where πµ : R4 →
R denotes the projection onto the µth coordinate. Thus φ(p) = (x0(p), x1(p), x2(p), x3(p)).
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• If (U,φ) and (V, ψ) are charts with U ∩ V ̸= ∅, the transition map ψ◦φ−1 : φ(U ∩ V )→
ψ(U ∩ V ) must be smooth.

• A collection of mutually compatible charts forms an atlas; its maximal extension defines
the smooth structure on M .

Common Terminology.
• Bijective. A map f : X → Y is bijective if it is both injective (one-to-one) and surjective

(onto), so that each y ∈ Y corresponds to exactly one x ∈ X.
• Homeomorphism. A bijective map f : X → Y between topological spaces is a homeo-

morphism if both f and its inverse f−1 are continuous. Homeomorphic spaces share the
same topological structure.

• Diffeomorphism. A bijective map f : M → N between smooth manifolds is a diffeomor-
phism if both f and f−1 are smooth. Diffeomorphic manifolds have identical differentiable
structures.

• Isomorphism (general use). The term isomorphism means “structure-preserving
bijection.” Its precise meaning depends on context: a homeomorphism is an isomorphism
in the category of topological spaces, and a diffeomorphism is an isomorphism in the
category of smooth manifolds.

Bridging the viewpoints. Wald’s coordinates xµ are precisely the component functions of the
chart map φ in Lee’s formalism. A “coordinate system” in physics is therefore a chart (U,φ), and
the requirement that coordinate transformations be smooth is the mathematical statement that
the transition maps ψ ◦ φ−1 are smooth diffeomorphisms. The compatibility of these maps ensures
that all observers— each using their own coordinates—describe overlapping regions of spacetime
consistently (see Fig. 2.1).

Physical interpretation. The manifold M represents the set of all possible spacetime events.
Each chart (U,φ) corresponds to a local observer assigning coordinates xµ to those events within
their accessible region. Smooth transition maps express the physical requirement that when two
observers describe the same region of spacetime, their coordinate systems are related by smooth,
differentiable transformations.

Example: Minkowski spacetime. In special relativity, M = R4 equipped with the standard
Cartesian coordinates

(x0, x1, x2, x3) = (t, x, y, z).

Here a single chart covers all of M because spacetime is globally Euclidean as a manifold (though
not as a metric space), and the transition functions are simply the Lorentz transformations, which
are smooth diffeomorphisms of R4 (Fig 2.2).

Here the minus sign that distinguishes the time direction appears in the metric tensor,

g = −dt2 + dx2 + dy2 + dz2,

not in the coordinate labels themselves.
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Figure 2.1: Overlapping coordinate charts (U,φ) and (V, ψ) on a manifold M . The transition map
ψ ◦ φ−1 relates the coordinates assigned to the same events in the overlap U ∩ V . The smoothness
of these maps is what makes M a smooth manifold.

Figure 2.2: A schematic representation of the global chart for Minkowski spacetime. A point p ∈M
on the manifold is mapped by φ : M → R4 to its coordinate image φ(p) = (x0(p), x1(p), x2(p), x3(p)).
Only two coordinate directions (x0, x1) are shown; the remaining components (x2, x3) are suppressed.
The diagram represents the abstract correspondence between the manifold and its coordinate space,
not a literal embedding in higher dimensions.



10 2 Spacetime as a Differentiable Manifold

Note 2.1. In the notation xµ(p), each xµ : U → R is a coordinate function that assigns to the point
p ∈M its corresponding coordinate value. In Minkowski spacetime, these are simply the familiar
coordinates x0(p) = t, x1(p) = x, x2(p) = y, x3(p) = z, or x0(p) = ct if we use time units of length.
This notation does not denote an algebraic operation, but rather the coordinate value of the point p
under the chart map.

Remark. A chart (U,φ) does not embed the manifold into Rn; it installs a local coordinate
system on the patch U . The image Û = φ(U) is a Euclidean model of that region, not a
geometric copy. Depicting φ : U → Û in diagrams emphasizes that coordinates are assigned
values in Rn, not that the manifold itself lives there.

Example: S2

This example serves as background for Problem 1

(a). Charts on the 2-sphere. Let

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}.

For i ∈ {1, 2, 3} and a sign ±, set

U±
1 = {(x, y, z) ∈ S2 : ±x > 0},

U±
2 = {(x, y, z) ∈ S2 : ±y > 0},

U±
3 = {(x, y, z) ∈ S2 : ±z > 0}.

These are the six open hemispheres as shown in Fig. 2.3. On each U±
i we use the two

remaining Cartesian coordinates as chart coordinates:

f±
1 (x, y, z) = (y, z), f±

2 (x, y, z) = (x, z), f±
3 (x, y, z) = (x, y).

Using our terminology,

• S2 ⊂ R3 is the manifold.
• p = (x, y, z) ∈ S2 is a point on the manifold.
• U±

i ⊂ S2 is an open hemisphere containing p (our open subsets).
• f±

i : U±
i → R2 is a coordinate chart.

So when p ∈ U±
i , the chart f±

i assigns Euclidean coordinates in R2 to that point. Here (x, y, z) is
the geometric point in the ambient space R3. With the constraint x2 + y2 + z2 = 1, it represents a
point on the manifold S2. These coordinates are not local coordinates on the manifold; they come
from the embedding S2 ⊂ R3. More on embeddings later.

The local coordinates on the manifold are (u, v) ∈ R2. They depend on the chosen chart and
parametrize a neighborhood of the point on S2. Formally,

(u, v) = f±
i (x, y, z)
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Important: Even when (u, v) happens to equal (x, y) numerically (as in the chart f+
3 ), they play

different conceptual roles.

For example, suppose p = (x, y, z) ∈ U+
3 (z > 0). Then the chart is, f+

3 (x, y, z) = (x, y) = (u, v).
So (x, y, z) = geometric point on the sphere and (u, v) = (x, y) = local coordinates in R2. Recovering
the geometric point from its local coordinates gives (x, y, z) = (u, v,

√
1− u2 − v2).

The image of each chart is the open unit disk D = {(u, v) ∈ R2 : u2 + v2 < 1}.

Why an open disk? Consider a point p = (x, y, z) ∈ U−
1 ⊂ S2. The chart f−

1 : U−
1 → R2 assigns

coordinates f−
1 (p) = (y, z). Here we identify (y, z) with the local coordinates (u, v) - that is the

coordinates on R2. The image, f−
1 (p) is the local Euclidean coordinate representation of the manifold

point p. Because p ∈ S2 it is constrained by x2 + y2 + z2 = 1, therefore y2 + z2 = 1 − x2. Since
p ∈ U−

1 , we know x < 0, but more importantly we know that x ̸= 0, hence x2 > 0, therefore,
y2 + z2 < 1. Thus,

(y, z) ∈ {(u, v) ∈ R2 : u2 + v2 < 1}.

This is exactly an open unit disk. The openness of the disk reflects the fact that U−
1 is an open

hemisphere; using a closed hemisphere would produce a closed disk, which is not allowed for a chart.

Each chart f±
i : U±

i → R2 “forgets" one coordinate. The inverse chart recovers the omitted
coordinate using the sphere constraint x2 + y2 + z2 = 1, with the sign determined by the chosen
hemisphere. Explicitly, for (u, v) ∈ D,

(f±
1 )−1(u, v) =

(
±
√

1− u2 − v2, u, v
)
,

(f±
2 )−1(u, v) =

(
u, ±

√
1− u2 − v2, v

)
,

(f±
3 )−1(u, v) =

(
u, v, ±

√
1− u2 − v2).

What does the inverse chart do? Given local coordinates (u, v) ∈ R2, the inverse map f±
i returns

the unique geometric point, p = (x, y, z) ∈ U±
i ⊂ S2 having those coordinates. In other words,

p = (f±
i )−1(f±

i (p)), so the inverse chart reconstructs the original geometric point on the sphere
from its local Euclidean coordinates.

What you will check in 1(a). For any pair of charts with nonempty overlap, the overlap map

f±
i ◦ (f±

j )−1 : f±
j (U±

i ∩ U
±
j ) ⊂ D −→ D

is a smooth map. For example, between U+
3 and U+

1 ,

(f+
1 ◦ (f+

3 )−1)(u, v) =
(
v,
√

1− u2 − v2),
which is C∞ on its domain (where 1− u2 − v2 > 0).

Anchor: Consider the geometric point p = (1, 0, 0).

• 12 + 02 + 02 = 1, so p ∈ S2.
• x = 1 > 0, so p ∈ U+

1 .
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• y = 0, so p /∈ U±
2 .

• z = 0, so p /∈ U±
3 .

• The chart f+
1 : U+

1 → R2 assigns the local coordinates

f+
1 (p) = (y, z) = (0, 0).

• Applying the inverse chart recovers the geometric point:

(f+
1 )−1(0, 0) =

(√
1− 02 − 02, 0, 0

)
= (1, 0, 0).

(b). Two-chart cover: stereographic projections.

Figures 2.4, 2.5 illustrate the idea behind the two stereographic projections used to construct a
two–chart atlas for S2. In the first figure, the sphere is projected onto the equatorial plane z = 0
from the north pole N = (0, 0, 1); every point x ∈ S2 \ {N} is joined to N by a straight line, which
intersects the plane at a point y ∈ R2. This defines the northern stereographic projection, σN (x, y, x).
The second figure shows the same construction in a meridional cross–section: for each point x on
the circle (representing a point on the sphere), a line through the north pole meets the plane at the
image point y. Performing the analogous construction from the south pole S = (0, 0,−1) gives the
southern stereographic projection, σS(x, y, z),

σN : S2\{N} −→ R2, σN (x, y, z) =
( x

1− z ,
y

1− z
)
,

σS : S2\{S} −→ R2, σS(x, y, z) =
( x

1 + z
,

y

1 + z

)
.

Their inverses are smooth on all of R2:

σ−1
N (u, v) =

(
2u

u2 + v2 + 1 ,
2v

u2 + v2 + 1 ,
u2 + v2 − 1
u2 + v2 + 1

)
,

σ−1
S (u, v) =

(
2u

u2 + v2 + 1 ,
2v

u2 + v2 + 1 , −
u2 + v2 − 1
u2 + v2 + 1

)
.

Thus {(S2\{N}, σN ), (S2\{S}, σS)} is a two-chart atlas covering S2.

Summary. A smooth manifold provides the coordinate-independent setting for spacetime geome-
try:

• Locally, each point has coordinates xµ, defined by a chart (U,φ).
• Globally, the manifold is patched together from overlapping coordinate systems related by

smooth maps.
• Physical fields must transform smoothly under such changes of coordinates, ensuring that

their meaning is intrinsic to spacetime, not tied to any single chart.
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+ hemisphere – hemisphere

i = 1 (x-split)

U+
1 U−

1

i = 3 (z-split)

U+
3 U−

3

Figure 2.3: The six open hemispheres U±
i = {(x, y, z) ∈ S2 : ±xi > 0} for i = 1, 2, 3 (with

x1 = x, x2 = y, x3 = z). Each chart f±
i uses the other two Cartesian coordinates as local

coordinates on U±
i ; e.g. on U±

3 , f±
3 (x, y, z) = (x, y). Shading indicates the hemisphere where the

indicated coordinate is positive (left column) or negative (right column). Only the x- and z-splits
(i = 1, 3) are shown here for clarity—these can be drawn without obscuring the geometry. The y-split
hemispheres (i = 2) are analogous but lie in planes that would appear edge-on in this projection
and are omitted.

Figure 2.4: Stereographic projection from the north pole N = (0, 0, 1) of the sphere onto the
equatorial plane z = 0. Each line through N and a point (x, y, z) ∈ S2 \ {N} intersects the plane
at a unique point (u, v) ∈ R2, defining the stereographic chart σN (x, y, z) = (x/(1− z), y/(1− z)).
The entire sphere minus N is thus mapped smoothly onto the plane.
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Figure 2.5: Cross-sectional view of stereographic projection. The point x on the circle represents a
point on S2, and the line through the north pole (open circle) meets the plane at the image point y.
This geometric construction yields the coordinate map σN : S2 \{N} → R2, and a similar projection
from the south pole S defines σS .

2.2 Smooth Maps Between Manifolds

Up to now, we have described how coordinate systems are installed on regions of a manifold M
by smooth maps φ : U → Rn. We now generalize this idea: a smooth map between manifolds
F : M → N relates points of one manifold to points of another in a way that is compatible with
their differentiable structures. The guiding principle is simple: a map between manifolds is smooth
if, after choosing coordinates on the domain and codomain, it becomes an ordinary smooth map
between open subsets of Euclidean space. This viewpoint is the common language behind coordinate
transformations, embeddings, and physical fields.

Definition (Lee). Let F : M → N be a map between smooth manifolds. We say that F is
smooth at a point p ∈M if there exist charts (U,φ) around p in M and (V, ψ) around F (p) in
N such that the coordinate representative

ψ ◦ F ◦ φ−1 : φ
(
U ∩ F−1(V )

)
−→ ψ(V )

is a smooth map between open subsets of Euclidean space. If F is smooth at every point of M ,
we call F a smooth map. (See Fig. 2.6.)

In physics language, this says that a coordinate transformation xµ′ = xµ′(xν) is smooth precisely
when its coordinate expression is a smooth function, and similarly a field f : M → R (a scalar field)
is smooth when it varies differentiably in every smooth coordinate system. Smoothness is what
guarantees that derivatives—and therefore local dynamics—are well defined.

Wald’s perspective. A smooth function f : M → R assigns a real number (a scalar field) to
each event in spacetime. More generally, a smooth map F : M → N can represent a coordinate
transformation, a projection, or another relationship between manifolds. Smoothness ensures
that physical quantities vary continuously and differentiably throughout spacetime.

Finally, smooth maps are stable under composition: if F : M → N and G : N → P are smooth,
then G ◦ F : M → P is smooth. In coordinates this is exactly the multivariable chain rule, and it
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Figure 2.6: A smooth map F : M → N between manifolds. In local coordinates, the composition
ψ ◦ F ◦ φ−1 is an ordinary smooth map between regions of Rm and Rn.

formalizes the idea that successive coordinate changes preserve differentiability.

We now illustrate the definition of a smooth map between manifolds with two concrete examples.
In each case, both the domain and codomain are smooth manifolds, and smoothness is verified by
expressing the map in local coordinates.

The first example is a map S2 → R, which represents a scalar field on the sphere. This is the
simplest and most important class of manifold maps in both mathematics and physics: functions
that assign a real number to each point of a manifold. Such maps appear throughout geometry and
spacetime physics, and they provide a direct bridge between manifolds and ordinary calculus.

The second example involves maps between coordinate charts on the same manifold S2. These
transition maps encode changes of coordinates and are the prototype for coordinate transformations
in differential geometry and general relativity. Understanding how the same geometric point is
described by different coordinate systems is essential for working with tensorial quantities later on.

We deliberately avoid more exotic examples, such as maps from S2 to a torus, at this stage. While
such maps are mathematically valid, they emphasize global topological features that are not central
to our immediate goals. The examples chosen here are meant to anchor the notation and definitions
in situations that students will encounter repeatedly, especially in the study of spacetime geometry,
where local coordinate descriptions and scalar fields play a foundational role.

Example I (a scalar field on S2): Define the height function

h : S2 → R, h(x, y, z) = z.

• If p = (x, y, z) ∈ S2, then h(p) = z ∈ R. Thus h assigns a real number (a scalar) to each point
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on the sphere.
• The function h is smooth because it is the restriction to S2 ⊂ R3 of the smooth ambient

function
H : R3 → R, H(x, y, z) = z.

• In local coordinates this smoothness is visible directly. For example, on the chart (U+
3 , f

+
3 )

where
f+

3 (x, y, z) = (x, y) = (u, v), (f+
3 )−1(u, v) =

(
u, v,

√
1− u2 − v2),

the coordinate expression of h is the map

h ◦ (f+
3 )−1 : D→ R, (h ◦ (f+

3 )−1)(u, v) =
√

1− u2 − v2,

which is smooth on the open disk D = {(u, v) ∈ R2 : u2 + v2 < 1}.
• Similarly, on the chart (U−

3 , f
−
3 ) one obtains

(h ◦ (f−
3 )−1)(u, v) = −

√
1− u2 − v2,

again smooth on D. Hence h : S2 → R is a smooth map between manifolds.

This construction is illustrated in Fig. 2.7, where the smoothness of h : S2 → R is determined by
expressing the map in local coordinates as the ordinary function ψ ◦ h ◦ (f±

i )−1 between Euclidean
spaces; in this case the chart ψ on R is the identity and is therefore suppressed.

Note: The function H : R3 → R is an ambient extension used to prove smoothness, but the map we
study geometrically is its restriction h : S2 → R, which is the arrow shown in the diagram.

Example II (a map between coordinate charts on S2): Let S2 be covered by the charts
(U±

i , f
±
i ) defined previously. Suppose a point p ∈ S2 lies in the overlap

U+
1 ∩ U

+
3 = {(x, y, z) ∈ S2 : x > 0, z > 0}.

• The chart f+
3 : U+

3 → R2 assigns coordinates

f+
3 (x, y, z) = (x, y) = (u, v).

• The inverse chart recovers the geometric point from these coordinates:

(f+
3 )−1(u, v) =

(
u, v,

√
1− u2 − v2).

• Applying the chart f+
1 to this point gives new coordinates:

f+
1
(
(f+

3 )−1(u, v)
)

= f+
1
(
u, v,

√
1− u2 − v2) =

(
v,
√

1− u2 − v2).
• The map

f+
1 ◦ (f+

3 )−1 : D→ R2, (u, v) 7→
(
v,
√

1− u2 − v2),
is called a transition map (or change of coordinates) between the two charts.

This example shows how the same geometric point on the manifold can be described by different
coordinate pairs, depending on the chosen chart. Smoothness of the manifold is encoded in the
requirement that all such transition maps between overlapping charts are smooth functions between
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Figure 2.7: Example I: A smooth map h : S2 → R expressed in local coordinates. An open set
U±

i ⊂ S2 containing p is mapped by the chart f±
i to its coordinate image D = f±

i (U±
i ) ⊂ R2.

An open interval V ⊂ R containing h(p) serves as a chart domain on the target manifold, with
coordinate map ψ. The smoothness of h at p is determined by the coordinate representative
ψ ◦ h ◦ (f±

i )−1 : D → ψ(V ) ⊂ R, which is an ordinary smooth function between Euclidean spaces.
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Figure 2.8: A transition map between overlapping coordinate charts on S2. Two chart domains
U±

i and U±
j overlap on the sphere, and a point p lies in their intersection. The chart f±

i maps U±
i

to its coordinate image Di = f±
i (U±

i ) ⊂ R2. The transition map f±
j ◦ (f±

i )−1 is defined only on
the coordinate image of the overlap f±

i (U±
i ∩ U

±
j ) ⊂ Di and takes values in f±

j (U±
i ∩ U

±
j ) ⊂ Dj .

Smoothness of the manifold is encoded in the requirement that all such transition maps are smooth
functions between open subsets of Euclidean space.

open subsets of Euclidean space. This relationship between overlapping chart domains and their
coordinate images is illustrated in Fig. 2.8, where the transition map is shown acting only on the
coordinate image of the overlap.

In practice, smooth maps are always analyzed locally: by choosing coordinates on the domain and
codomain, smoothness reduces to ordinary multivariable calculus.

2.3 Tangent Vectors and Tangent Spaces

Up to this point, we have focused on smooth functions and smooth maps between manifolds,
emphasizing that all notions of smoothness are ultimately defined using local coordinates. We now
turn to a new type of geometric object: tangent vectors. Rather than assigning numbers to points
of a manifold, tangent vectors encode the possible directions of change at a point. Although they
will soon be defined in an intrinsic, coordinate-free way, tangent vectors are constructed using the
same local-coordinate ideas developed above. In particular, their behavior is determined by how
they act on smooth functions, whose smoothness is itself defined via charts.

At each point p on a smooth manifold M , we can define the possible directions in which one can
move away from p. These directions form the tangent space TpM , which provides the local linear
approximation to the manifold. Tangent vectors are the building blocks of all tensorial objects in
general relativity: velocities, momenta, and directional derivatives of fields. First, some definitions:
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Definition 2.2 (Inner and Outer Leibniz Rules). Let X and Y be smooth vector fields on a manifold
M , acting as derivations on C∞(M).

• Inner Leibniz rule: When Y acts on a product of functions,

Y (fg) = f Y (g) + g Y (f),

expressing that Y itself satisfies the Leibniz (product) rule.
• Outer Leibniz rule: When X acts on a product that already contains the result of another

derivation (for instance, X(f Y g)), the Leibniz rule applies again:

X(f Y g) = (Xf)Y g + f X(Y g).

The same holds with X and Y interchanged. This second application of the Leibniz rule is
what produces the full expansion in the proof that [X,Y ] is a derivation.

Definition 2.3 (Linearity of derivations). Let X and Y be smooth vector fields on a manifold M ,
acting as derivations on the algebra of smooth functions C∞(M). A derivation is a linear operator
with respect to real scalars and addition of functions:

X(af + bg) = aX(f) + bX(g), a, b ∈ R, f, g ∈ C∞(M).

Consequently, for any two derivations X and Y , their commutator

[X,Y ](f) := X(Y f)− Y (Xf)

is also linear:
[X,Y ](af + bg) = a [X,Y ](f) + b [X,Y ](g).

This property, together with the Leibniz rule, ensures that [X,Y ] defines another derivation—hence
a vector field on M .

Wald’s perspective: A tangent vector at p ∈M is a derivation, that is, a linear operator Xp

acting on smooth functions f ∈ C∞(M) and satisfying the Leibniz rule:

Xp(fg) = f(p)Xp(g) + g(p)Xp(f).

These tangent vectors form a vector space TpM , and in coordinates (xµ), the natural basis is
given by

{
∂

∂xµ

∣∣
p

}
.

Lee’s formal framework:
• A tangent vector at p is a derivation v : C∞(M)→ R satisfying linearity and the Leibniz

rule:
v(fg) = f(p)v(g) + g(p)v(f).

• The collection of all such derivations forms a real vector space, the tangent space TpM .
• In a coordinate chart (U, x1, . . . , xn) containing p, we define a natural basis{

∂

∂xi

∣∣∣
p

}
, where ∂

∂xi

∣∣∣
p
(f) = ∂(f ◦ x−1)

∂xi

∣∣∣
x(p)

.



20 2 Spacetime as a Differentiable Manifold

• Any tangent vector can thus be written as v = vi ∂
∂xi

∣∣
p
, with components vi ∈ R.

Bridging the viewpoints. Wald’s derivation-based definition of tangent vectors is equivalent to
Lee’s construction using coordinate charts. In practice, we think of a tangent vector v ∈ TpM as
an infinitesimal displacement at p or as a directional derivative acting on scalar fields. If γ(t) is a
smooth curve on M with γ(0) = p, then

v(f) = d

dt

[
f(γ(t))

]
t=0

defines a tangent vector v = γ̇(0), called the velocity vector of the curve at p. Every tangent vector
can be realized in this way.

Figure 2.9: Tangent plane TaM to a two-dimensional manifold M (the sphere) at a point a. The
tangent vector γ̇(0) represents the velocity of a curve γ(t) passing through a, showing how directions
on M correspond to vectors in the tangent space.

Physical interpretation. In spacetime, a tangent vector represents the four-velocity of a particle
at an event p:

ua = dxa

dτ
.

The tangent space TpM is thus the space of all possible velocity vectors an observer at p could have.
A field of tangent vectors over M defines a vector field, such as a velocity or momentum field.
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Commutator (Lie bracket) of vector fields. Given two smooth vector fields v and w on M ,
we can form a new vector field [v, w], called their commutator or Lie bracket, defined by

[v, w](f) := v[w(f)]− w[v(f)], f ∈ C∞(M).

This measures the failure of the two directional derivatives to commute when acting on smooth
functions. It is straightforward to verify that [v, w] again satisfies the Leibniz rule, so it is itself
a smooth vector field. The space of smooth vector fields X(M) is therefore closed under the
commutator operation, and this operation satisfies

[v, w] = −[w, v],
[v, aw1 + bw2] = a[v, w1] + b[v, w2],

[[v, w], z] + [[w, z], v] + [[z, v], w] = 0,

making X(M) into a Lie algebra. In local coordinates xµ,

[v, w] =
(
vν∂νw

µ − wν∂νv
µ) ∂

∂xµ
.

Summary.

• Tangent vectors are derivations acting on smooth functions.
• The tangent space TpM is a real vector space spanned by the coordinate basis

{
∂

∂xi |p
}
.

• Each tangent vector corresponds to a velocity vector of a curve through p.
• Physically, tangent vectors represent possible directions of motion or rates of change at a

spacetime event.

2.4 The Differential and Pushforward

Overview. Up to this point, we have described smooth manifolds M,N and smooth maps
F : M → N . At each point p ∈M , the map F induces a natural correspondence between directions
at p and directions at its image F (p). This correspondence is the differential of F at p, denoted

dFp : TpM −→ TF (p)N.

In physics, this same object is called the pushforward of F and written F∗.

Definition (Lee). Let F : M → N be a smooth map and let p ∈ M . For each tangent
vector Xp ∈ TpM , the differential dFp(Xp) ∈ TF (p)N is the tangent vector that acts on smooth
functions f ∈ C∞(N) by

(dFp(Xp))(f) = Xp(f ◦ F ).

That is, the new vector differentiates a function f on the target manifold N by first pulling f
back along F and then applying Xp. This definition guarantees that dFp is linear. (Fig. 2.10)
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Figure 2.10: The differential dFp relates tangent spaces of two manifolds M and N under a smooth
map F : M → N . In local coordinates (U,φ) and (V, ψ), it corresponds to the ordinary Jacobian
dF̂p̂ of the coordinate representation F̂ = ψ ◦ F ◦ φ−1.

Coordinate expression. Suppose (xi) are local coordinates on M near p and (yα) are local
coordinates on N near F (p). Then F can be written in components as

yα = Fα(x1, . . . , xm).

The differential acts on the coordinate basis vectors by

dFp

(
∂

∂xi

∣∣∣
p

)
= ∂Fα

∂xi
(p) ∂

∂yα

∣∣∣
F (p)

.

Thus, in coordinates, dFp is represented by the Jacobian matrix[
∂Fα

∂xi
(p)
]
.

This Jacobian encodes how the coordinate components of a tangent vector transform under the
map F .

Example (for intuition). If F : R2 → R2 is given by F (x, y) = (r, θ) =
(
√
x2 + y2, tan−1(y/x)), then

dF(x,y) =


x√

x2 + y2
y√

x2 + y2

− y

x2 + y2
x

x2 + y2

 .
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This Jacobian is precisely the matrix that converts Cartesian basis vectors (∂x, ∂y) into polar
basis vectors (∂r, ∂θ).

Geometric interpretation. The map dFp carries tangent vectors at p to their “images” under F .
If a curve γ(t) passes through p with velocity vp = γ̇(0), then the image curve F ◦γ passes through
F (p) with velocity

(dFp)(vp) = d

dt

(
F ◦γ(t)

)∣∣∣
t=0

.

Thus the differential describes how directions—velocities of curves— transform under smooth maps.
In spacetime language, the pushforward F∗ tells how a coordinate transformation or embedding
moves tangent vectors from one manifold to another.

Figure 2.11: Geometric picture of the pushforward dFp: a tangent vector v ∈ TpM to a curve γ at
p is mapped to the tangent vector dFp(v) ∈ TF (p)N of the image curve F ◦ γ at F (p). Acting on a
function f : N → R, the pushforward satisfies (dFpv)(f) = v(f ◦ F ).

Physical viewpoint. In general relativity, F∗ appears constantly:

• A coordinate transformation xµ 7→ xµ′(x) acts on tangent vectors by the Jacobian ∂xµ′

∂xν .
• The inclusion i : Σ ↪→M of a spatial hypersurface pushes tangent vectors from Σ into the

ambient spacetime M.
• Along a worldline γ : R→M , the pushforward relates derivatives with respect to proper time
τ to vectors in Tγ(τ)M .

Summary. The differential dFp (or pushforward F∗) is:

• a linear map between tangent spaces,
• represented in coordinates by the Jacobian matrix,
• and the geometric mechanism by which smooth maps carry directions and velocities from one

manifold to another.
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2.5 Covectors and the Pullback

Overview. Tangent vectors describe directions of change on a manifold. Their duals—called
covectors or one-forms—measure rates of change along those directions. Together they form the
natural algebraic pair that underlies tensor calculus in general relativity.

Mathematical definition (Lee). At a point p ∈M , the cotangent space to M is defined as

T ∗
pM = Hom(TpM,R),

the vector space of all linear maps from the tangent space TpM to the real numbers. Elements of
T ∗

pM are called covectors or one-forms. If vp ∈ TpM and ωp ∈ T ∗
pM , then their pairing is a real

number
ωp(vp) ∈ R.

This operation is bilinear: ωp(av1 + bv2) = aωp(v1) + b ωp(v2).

Coordinate representation. Given local coordinates (x1, . . . , xn), the basis for TpM is{
∂

∂xi

∣∣∣
p

}
,

and the dual basis for T ∗
pM is

{(dxi)p},

defined by
(dxi)p

(
∂

∂xj

∣∣∣
p

)
= δi

j .

Hence any covector at p can be written as a linear combination

ωp = ωi(dxi)p,

and acts on a vector vp = vj ∂
∂xj

∣∣
p

via
ωp(vp) = ωiv

i.

Differentials of functions. For a smooth scalar field f : M → R, its differential at p, denoted
dfp, is the covector that acts on a tangent vector vp by

dfp(vp) = vp(f) = d

dt
f(γ(t))

∣∣∣
t=0

,

where γ(t) is any curve in M with γ(0) = p and velocity γ̇(0) = vp. In coordinates,

df = ∂f

∂xi
dxi.

Thus df is the one-form corresponding to the gradient of f : it maps each vector to the directional
derivative of f along that vector.
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Example (gradient on R2). Let f(x, y) = x2 + y2. Then

df = 2x dx+ 2y dy.

For a vector v = a ∂x + b ∂y, we have

df(v) = 2x a+ 2y b,

which equals the directional derivative of f in the direction v.

Pullback of covectors. Given a smooth map F : M → N , the pullback of a covector ωF (p) ∈
T ∗

F (p)N is the covector F ∗ωF (p) ∈ T ∗
pM defined by

(F ∗ωF (p))(vp) = ωF (p)(dFp(vp)).

That is, the pullback acts by first pushing forward the vector vp and then applying the covector ω.
In coordinates, if ω = ωα dy

α and yα = Fα(xi), then

F ∗ω = ωα
∂Fα

∂xi
dxi.

Physical interpretation. Covectors are the mathematical form of gradients, momenta, and field
differentials.

• The gradient of a scalar field f is the one-form df , assigning a real number (rate of change) to
each direction.

• Under a coordinate transformation xµ 7→ xµ′(x), the components of a one-form transform
with the inverse Jacobian:

ωµ′ = ∂xµ

∂xµ′ ωµ.

• The pullback F ∗ tells how to compare measurements made in different manifolds—e.g. how a
potential or flux density on one space induces one on another.

Summary.

• The cotangent space T ∗
pM consists of all linear maps TpM → R.

• Covectors (one-forms) act on vectors to produce real numbers.
• The differential df of a function is the one-form corresponding to its gradient.
• A smooth map F : M → N induces a pullback F ∗ : T ∗

F (p)N → T ∗
pM that transports covectors

“backward” along F .

Summary of relationships between f , v, df , and dfp(v):

• f : M → R — a smooth scalar field on the manifold. It assigns a real number to each point
p ∈M (e.g., temperature, potential).
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• vp ∈ TpM — a tangent vector at p. It represents a direction of motion or infinitesimal
displacement through p.

• dfp ∈ T ∗
pM — the differential (or covector) of f at p. It acts linearly on tangent vectors and

encodes the local gradient of f .
• dfp(vp) = vp(f) — the directional derivative of f along vp. It gives the rate of change of

the scalar field f as one moves in direction vp.
• Geometrically:

– f is the landscape (scalar field),
– dfp is the local slope (gradient covector),
– vp is a direction you choose to walk,
– dfp(vp) is how steep the slope feels in that direction.

2.6 Tensors and Tensor Fields

Overview. Once tangent and cotangent vectors are in hand, we can construct objects that combine
them in linear ways. A tensor at a point p ∈M is simply a multilinear map that takes some number
of tangent and cotangent vectors as inputs and returns a real number.

Wald’s perspective: Tensors are multilinear functions built from vectors and covectors. A
tensor of type (r, s) takes r covectors and s vectors as input:

T : (T ∗
pM)r × (TpM)s −→ R.

Their components T a1...ar
b1...bs transform under coordinate changes by one factor of the Jacobian

for each upper index and one inverse Jacobian for each lower index. Tensor fields assign such an
object to every point p ∈M .

Lee’s formal framework:
• For any vector space V , its dual is V ∗ = {linear maps V → R}.
• The tensor product V ⊗r ⊗ (V ∗)⊗s is the space of all multilinear maps (V ∗)r × V s → R,

called tensors of type (r, s).
• On a manifold M , this defines the tensor space T r

s (M) =
⋃

p∈M T r
s (TpM), and smooth

sections of this bundle are the tensor fields.

Bridging the viewpoints. Wald’s index notation and Lee’s multilinear definition describe the
same object. At each point p ∈ M , a tensor T of type (r, s) acts on r covectors and s vectors to
yield a real number:

T (ω1, . . . , ωr, v1, . . . , vs) = T a1...ar
b1...bs ω1a1 · · ·ωrarv

b1
1 · · · v

bs
s .

The upper (contravariant) indices correspond to the vector slots, and the lower (covariant) indices
correspond to the covector slots.

Physical interpretation. Tensors are the language of field theory:
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• The metric tensor gab measures spacetime intervals.
• The electromagnetic field Fab is an antisymmetric tensor field.
• The stress–energy tensor Tab encodes energy, momentum, and pressure.

Each of these is a smooth assignment of a multilinear map to every event in spacetime.

Summary.

• A tensor of type (r, s) acts on r covectors and s vectors.
• A tensor field assigns such an object smoothly to each point in M .
• Components transform by Jacobian factors under coordinate changes, ensuring the physical

laws they encode are coordinate-independent.

2.7 The Metric Tensor

Overview. Up to this point, we have introduced tangent and cotangent spaces, and the way
covectors act on vectors to produce scalars. The next structure, the metric tensor, provides a
systematic way to compare vectors at a point: it measures lengths, angles, and, in relativity, causal
relationships.

Wald’s perspective: A spacetime is a smooth four-dimensional manifold M equipped with a
metric tensor gab, a symmetric, non-degenerate tensor field of type (0, 2). For any two tangent
vectors va, wa ∈ TpM , the metric assigns a scalar

gabv
awb = gp(v, w),

interpreted as the inner product between the two vectors. Its signature (−+ ++) encodes the
distinction between timelike, null, and spacelike directions.

Lee’s formal framework: A Riemannian metric on a smooth manifold M is a smooth
assignment

gp : TpM × TpM → R,

such that for every point p ∈M :
(a) gp is bilinear : gp(av1 + bw1, v2) = a gp(v1, v2) + b gp(w1, v2), and linear in each argument.
(b) gp is symmetric: gp(v, w) = gp(w, v).
(c) gp is non-degenerate: if gp(v, w) = 0 for all w, then v = 0.

When gp(v, v) > 0 for all nonzero v, g is called Riemannian. If instead g has signature (−+ ++)
or another indefinite form, it is called a pseudo-Riemannian metric—the Lorentzian case of
relativity.

Geometric meaning. The metric defines an inner product on each tangent space TpM , allowing
us to measure:
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• the length of a vector, ∥v∥2 = gp(v, v);
• the angle between vectors, via cos θ = gp(v,w)

∥v∥ ∥w∥ ;
• and the orthogonality condition, gp(v, w) = 0.

In Lorentzian signature, gp(v, v) can be positive, negative, or zero: timelike, spacelike, or null. Thus
the metric is not merely a notion of “distance,” but the structure that defines causality in spacetime.

Raising and lowering indices. Because gp is non-degenerate, it provides a natural isomorphism
between tangent and cotangent spaces:

♭ : TpM → T ∗
pM, vp 7→ v♭

p,

where
v♭

p(wp) = gp(vp, wp) for all wp ∈ TpM.

This “lowering” map allows us to represent a vector as a covector. The inverse map,

♯ : T ∗
pM → TpM, ωp 7→ ω♯

p,

is the corresponding “raising” operation, defined so that

gp(ω♯
p, wp) = ωp(wp).

Together these define the familiar index operations va = gabv
b and va = gabvb in tensor notation.

Physical interpretation. The metric provides the geometric scaffolding of spacetime:

• It defines proper time and proper distance: ds2 = gµν dx
µdxν .

• It establishes light cones and causal structure.
• It allows us to convert between vectors and covectors, enabling the formulation of physical

laws in covariant form.

Example (Minkowski metric). In flat spacetime with global coordinates (x0, x1, x2, x3) =
(t, x, y, z), the metric components are

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
For two tangent vectors vµ, wµ, their inner product is

gµνv
µwν = −v0w0 + v1w1 + v2w2 + v3w3.

This distinguishes timelike, spacelike, and null directions:
g(v, v) < 0, timelike,
g(v, v) = 0, null,
g(v, v) > 0, spacelike.
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But wait... I thought a tensor takes in r covectors and s vectors and outputs a real
number?
That’s absolutely right — by definition, a tensor at a point p is a multilinear map

Tp : (T ∗
pM)r × (TpM)s → R.

So the metric at a point gp is indeed a (0, 2)-tensor: it takes in two tangent vectors vp, wp and
returns a number gp(vp, wp).
When we write

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,
we’re no longer talking about just one gp, but about the entire metric tensor field: a smooth
assignment p 7→ gp over the manifold. In flat (Minkowski) spacetime the components are
constant everywhere, so the field looks identical at every point.
That’s why physicists often blur the language and say “the metric tensor” when they really
mean “the metric tensor field.” The distinction only becomes important once the components
gµν(x) start varying with position in a curved spacetime.

Summary. The metric tensor g is a symmetric, non-degenerate bilinear form on each tangent
space, smoothly varying from point to point. It enables:

• measurement of lengths and angles;
• conversion between vectors and covectors;
• and, in relativity, the distinction between causal types of vectors.

It is the geometric heart of both Riemannian geometry and spacetime physics.

2.8 Orientation and Volume Forms (Optional)

Overview. Orientation gives a manifold a consistent notion of “handedness,” while a volume
form provides the geometric tool needed to define integration independently of coordinates. These
concepts become essential later for flux integrals, the divergence theorem, and the Einstein–Hilbert
action.

Wald’s perspective: Spacetime possesses a smooth, nowhere-vanishing volume element ϵabcd,
a completely antisymmetric tensor field of type (0, 4). In any coordinate system with positive
orientation,

ϵ0123 = +
√
| det g|,

and it transforms with the sign of the Jacobian determinant under coordinate changes. This tensor
defines oriented volume elements used in integration and in expressing physical conservation
laws such as ∇aT

ab = 0.
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Lee’s formal framework: A smooth manifold M is said to be orientable if it admits an atlas
whose transition maps all have positive Jacobian determinant. An orientation is a choice of
such equivalence class of atlases.
A volume form on an n-dimensional oriented manifold is a smooth, nowhere-vanishing differential
form of top degree:

ω ∈ Ωn(M), ωp(v1, . . . , vn) = (signed volume spanned by the vi).

In the Riemannian or Lorentzian case, the metric naturally induces a canonical volume form

ω =
√
| det g| dx1 ∧ dx2 ∧ · · · ∧ dxn.

Bridging the viewpoints. For physicists, the symbol ϵabcd plays two roles: it encodes the
manifold’s orientation (sign convention), and it acts as the metric-compatible volume measure.
Formally, it is the component representation of the volume form ω with respect to a positively
oriented coordinate basis:

ϵabcd = ω

(
∂

∂xa
,
∂

∂xb
,
∂

∂xc
,
∂

∂xd

)
.

Integrals over spacetime regions or hypersurfaces use this form to ensure coordinate invariance:∫
M
f ϵ =

∫
f
√
|det g| d4x.

Physical interpretation. Orientation distinguishes “future” from “past,” or “right-handed” from
“left-handed” coordinate systems. The volume form defines the invariant measure of spacetime, so
that physical quantities such as energy or charge are independent of the coordinate chart. In general
relativity, ϵabcd enters directly into:

• flux integrals, e.g.
∫

Σ J
aϵabcd;

• definitions of dual tensors via the Hodge star;
• and the Einstein–Hilbert action, S =

∫
R
√
|det g| d4x.

Example (Euclidean 3-space). On R3 with standard coordinates (x, y, z), the canonical
orientation is given by the right-hand rule, and

ω = dx ∧ dy ∧ dz.

For vectors v1, v2, v3, ω(v1, v2, v3) equals the signed volume of the parallelepiped they span. In
curved 3-space with metric g, this becomes ω =

√
det g dx ∧ dy ∧ dz.

Summary. Orientation and the volume form together provide:

• a consistent notion of handedness on M ;
• a metric-independent definition of signed volume;
• and the geometric foundation for integration on manifolds.
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In physics, these ideas appear through ϵabcd and
√
|det g| d4x, which ensure that integrals and

conservation laws are invariant under smooth coordinate transformations.

2.9 Summary and Outlook

Summary. We have built the full geometric foundation needed for general relativity in purely
differential-geometric terms:

• Spacetime M is a smooth 4-dimensional manifold equipped with a Lorentzian metric g.
• Tangent vectors, covectors, and general tensors arise naturally from the tangent and cotangent

bundles.
• Smooth maps between manifolds induce pushforwards and pullbacks that describe how physical

quantities transform under coordinate changes.
• The metric tensor g provides an inner product on each tangent space TpM , defines distances

and causal structure, and allows indices to be raised and lowered.

Physical picture. At this point we have a complete mathematical language for describing
spacetime as a differentiable manifold: points are events, tangent vectors are directions of motion,
and tensor fields represent physical quantities such as fields, fluxes, and stresses. All of this structure
is purely kinematical— it describes how objects live and transform on spacetime, but not yet how
they evolve or curve.

Interdisciplinary Insight: Geometry in Modern Machine Learning
The mathematical structures developed in this chapter—manifolds, tangent spaces, covectors,
and tensors—form not only the language of general relativity but also a growing foundation for
modern machine learning.
Most real-world data do not occupy the full Euclidean space in which they are embedded.
Instead, they lie on smooth manifolds of much lower intrinsic dimension. Understanding how
to analyze and compare data on such curved spaces requires precisely the tools of differential
geometry.

• Manifold Learning: Algorithms such as Isomap, LLE, and t-SNE attempt to uncover
the manifold structure underlying high-dimensional data.

• Geometric Deep Learning: Extends neural networks to non-Euclidean do-
mains—graphs, surfaces, and manifolds—using ideas of symmetry, invariance, and connec-
tion.

• Riemannian Optimization: Many learning problems involve constraints that make pa-
rameter spaces curved (e.g. spheres, orthogonal matrices, covariance manifolds). Gradients
and geodesics on these spaces rely on Riemannian geometry.

• Information Geometry: Views probability distributions as points on a manifold endowed
with the Fisher information metric. The resulting “natural gradient” follows geodesics in
information space.

• Topological Data Analysis: Uses persistent homology to capture the global shape and
connectivity of data sets in a way that is robust to noise.

In all these areas, the central questions mirror those of spacetime geometry:
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What is the shape of the space in which we live—and how do objects change and relate within it?

Differential geometry provides the language for answering this question, whether the manifold is
the universe itself or the high-dimensional space of data.

Problems

The following problems come from Chapter 2 of Wald’s General Relativity.

1. (a) Show that the overlap functions f±
i ◦ (f±

j )−1 are C∞, thus completing the demonstration
given in section 2.1 of Wald that S2 is a manifold.

(b) Show by explicit construction that two coordinate systems (as opposed to the six used
in the text) suffice to cover S2. (It is impossible to cover S2 with a single chart, as
follows from the fact that S2 is compact, but every open subset of R2 is noncompact; see
Appendix A.)

Solution

Solution.
(a). Let

U±
i = {(x1, x2, x3) ∈ S2 : ±xi > 0}, (x1, x2, x3) = (x, y, z).

Each U±
i is mapped diffeomorphically onto the open unit disk D = {(u, v) ∈ R2 : u2 +v2 <

1} by the “projection” charts

f±
1 (x, y, z) = (y, z), f±

2 (x, y, z) = (x, z), f±
3 (x, y, z) = (x, y),

whose inverses (using x2 + y2 + z2 = 1) are

(f±
1 )−1(u, v) =

(
±
√

1− u2 − v2, u, v
)
,

(f±
2 )−1(u, v) =

(
u, ±

√
1− u2 − v2, v

)
,

(f±
3 )−1(u, v) =

(
u, v, ±

√
1− u2 − v2).

For any pair of charts with nonempty overlap, the overlap map

f±
i ◦ (f±

j )−1 : f±
j (U±

i ∩ U
±
j ) ⊂ D −→ D

is smooth. (The only disjoint pair is U+
i and U−

i .) Each component of f±
i ◦ (f±

j )−1 is one
of u, v, or ±

√
1− u2 − v2, hence C∞ on its (open) domain u2 + v2 < 1 with the relevant

sign inequality. For example, on U+
3 ∩ U

+
1 ,

(f+
1 ◦ (f+

3 )−1)(u, v) =
(
v,
√

1− u2 − v2),
which is C∞ where 1− u2 − v2 > 0. Thus all transition maps are smooth, completing the
verification that this atlas makes S2 a smooth manifold.
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(b). Define the northern and southern stereographic projections

σN : S2 \ {N} −→ R2, σN (x, y, z) =
( x

1− z ,
y

1− z
)
,

σS : S2 \ {S} −→ R2, σS(x, y, z) =
( x

1 + z
,

y

1 + z

)
,

with inverses (smooth on all of R2)

σ−1
N (u, v) =

(
2u

u2 + v2 + 1 ,
2v

u2 + v2 + 1 ,
u2 + v2 − 1
u2 + v2 + 1

)
,

σ−1
S (u, v) =

(
2u

u2 + v2 + 1 ,
2v

u2 + v2 + 1 , −
u2 + v2 − 1
u2 + v2 + 1

)
.

Hence σN and σS are diffeomorphisms from S2 \ {N} and S2 \ {S} onto R2, respectively.
On the overlap, the transition maps are

σN ◦ σ−1
S (u, v) = (u, v)

u2 + v2 , σS ◦ σ−1
N (u, v) = (u, v)

u2 + v2 ,

which are smooth on R2\{(0, 0)}. Therefore the two charts (S2\{N}, σN ) and (S2\{S}, σS)
form a smooth atlas covering S2.

2. Prove that any smooth function F : Rn → R can be written in the form equation (2.2.2).
(Hint: For n = 1, use the identity

F (x)− F (a) = (x− a)
∫ 1

0
F ′[ t(x− a) + a

]
dt;

then prove it for general n by induction.)

Solution

Solution (2). Let F : Rn → R be smooth and fix a ∈ Rn. Consider the line segment
γ : [0, 1]→ Rn,

γ(t) = a+ t(x− a), ϕ(t) := F (γ(t)).
By the multivariable chain rule,

ϕ′(t) =
n∑

µ=1
∂µF

(
γ(t)

) dγµ

dt
=

n∑
µ=1

∂µF
(
a+ t(x− a)

)
(xµ − aµ),

since dγµ

dt
= xµ − aµ. Integrating from 0 to 1 and using the Fundamental Theorem of

Calculus,

F (x)− F (a) =
∫ 1

0
ϕ′(t) dt =

n∑
µ=1

(xµ − aµ)
∫ 1

0
∂µF

(
a+ t(x− a)

)
dt.

Thus

F (x) = F (a) +
n∑

µ=1
(xµ − aµ)Hµ(x), Hµ(x) :=

∫ 1

0
∂µF

(
a+ t(x− a)

)
dt.
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Each Hµ is smooth (integral of a smooth function depending smoothly on x over a compact
interval), and

Hµ(a) =
∫ 1

0
∂µF (a) dt = ∂µF (a).

This is equation (2.2.2).

3. (a) Verify that the commutator, defined by equation (2.2.14), satisfies the linearity and
Leibnitz properties, and hence defines a vector field.

(b) Let X,Y, Z be smooth vector fields on a manifold M . Verify that their commutator
satisfies the Jacobi identity:

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0.

(c) Let Y1, . . . , Yn be smooth vector fields on an n-dimensional manifold M such that at each
p ∈M they form a basis of the tangent space Vp. Then, at each point, we may expand
each commutator [Yα, Yβ] in this basis, thereby defining the functions Cγ

αβ = −Cγ
βα by

[Yα, Yβ] =
∑

γ

Cγ
αβYγ .

Use the Jacobi identity to derive an equation satisfied by Cγ
αβ . (This equation is a useful

algebraic relation if the Cγ
αβ are constants, as will be the case if Y1, . . . , Yn are left [or

right] invariant vector fields on a Lie group [see section 7.2].)

Solution

Problem. For smooth vector fields X,Y, Z on a manifold M , with the commutator (Lie
bracket)

[X,Y ](f) := X(Y f)− Y (Xf), f ∈ C∞(M),

(a) Linearity and Leibniz. Linearity in f is immediate from linearity of X and Y :

[X,Y ](af + bg) = a[X,Y ]f + b[X,Y ]g (a, b ∈ R).

For the Leibniz rule, use that X and Y are derivations:

[X,Y ](fg) = X
(
Y (fg)

)
− Y

(
X(fg)

)
(inner Leibniz)= X

(
f Y g + g Y f

)
− Y

(
f Xg + g Xf

)
= X(fY g) +X(gY f)− Y (fXg)− Y (gXf)
(outer Leibniz)= (Xf)Y g + f X(Y g) + (Xg)Y f + g X(Y f)
− (Y f)Xg − f Y (Xg)− (Y g)Xf − g Y (Xf)

= f
(
X(Y g)− Y (Xg)

)
+ g

(
X(Y f)− Y (Xf)

)
= f [X,Y ](g) + g [X,Y ](f).

Thus [X,Y ] is again a derivation, hence a (smooth) vector field.
(b) Jacobi identity. We verify explicitly that the commutator of vector fields satisfies
the Jacobi identity. For any smooth function f ∈ C∞(M),

[X,Y ](f) = X(Y f)− Y (Xf).
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Then

[X, [Y,Z]](f) = X
(
[Y,Z]f

)
− [Y,Z]

(
Xf

)
= X(Y Zf − ZY f)−

(
Y ZXf − ZY Xf

)
= XY Zf − XZY f − Y ZXf + ZY Xf ,

[Y, [Z,X]](f) = Y
(
[Z,X]f

)
− [Z,X]

(
Y f
)

= Y (ZXf −XZf)−
(
ZXY f −XZY f

)
= Y ZXf − Y XZf − ZXY f + XZY f ,

[Z, [X,Y ]](f) = Z
(
[X,Y ]f

)
− [X,Y ]

(
Zf
)

= Z(XY f − Y Xf)−
(
XY Zf − Y XZf

)
= ZXY f − ZY Xf − XY Zf + Y XZf .

Adding the three expressions gives

[X, [Y, Z]](f) + [Y, [Z,X]](f) + [Z, [X,Y ]](f) = 0,

since each term cancels with an identical term of opposite sign:

+XY Zf (from the first) cancels with −XY Zf (from the third),
+XZY f (from the second) cancels with −XZY f (from the first),
+Y ZXf (from the second) cancels with − Y ZXf (from the first),
+ZY Xf (from the first) cancels with − ZY Xf (from the third),
+ZXY f (from the third) cancels with − ZXY f (from the second),
+Y XZf (from the third) cancels with − Y XZf (from the second).

Therefore, for all f ∈ C∞(M),

[[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0,

which is the Jacobi identity for the Lie bracket of vector fields.
(c) Identity for structure functions. Let {Yα}nα=1 be a local frame (basis of TpM at
each p), and define smooth functions Cγ

αβ = −Cγ
βα by

[Yα, Yβ] = Cγ
αβ Yγ .

Compute, using [Yα, fYµ] = Yα(f)Yµ + f [Yα, Yµ]:

[Yα, [Yβ, Yγ ]] = [Yα, C
µ
βγYµ]

= Yα(Cµ
βγ)Yµ + Cµ

βγ [Yα, Yµ]

=
(
Yα(Cδ

βγ) + Cµ
βγC

δ
αµ

)
Yδ.

Summing cyclically in (α, β, γ) and using the Jacobi identity gives, for each δ,∑
cyc(αβγ)

(
Yα(Cδ

βγ) + Cµ
βγ C

δ
αµ

)
= 0 .
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This is the desired relation. When the Cγ
αβ are constants (e.g. for left-invariant frames

on a Lie group), the first (derivative) term vanishes and we obtain the purely algebraic
condition ∑

cyc(αβγ)
Cµ

βγ C
δ
αµ = 0,

i.e. the Jacobi identity for the structure constants.

4. (a) Show that in any coordinate basis, the components of the commutator of two vector
fields v and w are given by

[v, w]µ =
∑

ν

(
vν ∂w

µ

∂xν
− wν ∂v

µ

∂xν

)
.

(b) Let Y1, . . . , Yn be as in problem 3(c). Let Y 1∗, . . . , Y n∗ be the dual basis. Show that the
components (Y γ∗)µ of Y γ∗ in any coordinate basis satisfy

∂(Y γ∗)µ

∂xν
− ∂(Y γ∗)ν

∂xµ
=
∑
α,β

Cγ
αβ(Y α∗)µ(Y β∗)ν .

(Hint: Contract both sides with (Yα)µ(Yβ)ν .)

Solution

(a) Show that in a coordinate basis,

[v, w]µ = vν ∂w
µ

∂xν
− wν ∂v

µ

∂xν
.

In a coordinate basis {∂µ} every vector field has the form v = vµ∂µ and w = wµ∂µ. The
commutator of vector fields is defined by

[v, w] := v(w)− w(v).

Compute the action of v on w:

v(w) = vν∂ν(wµ∂µ) = vν(∂νw
µ)∂µ + vνwµ∂ν∂µ.

Likewise,
w(v) = wν(∂νv

µ)∂µ + wνvµ∂ν∂µ.

But partial derivatives commute in a coordinate basis:

[∂ν , ∂µ] = 0.

Therefore the second terms cancel, leaving

[v, w] = (vν∂νw
µ − wν∂νv

µ) ∂µ.

Thus the components are
[v, w]µ = vν∂νw

µ − wν∂νv
µ.



2.9 Summary and Outlook 37

(b) Show that
∂ν(Y γ∗)µ − ∂µ(Y γ∗)ν = Cγ

αβ(Y α∗)µ(Y β∗)ν .

Let {Yα} be the vector fields of problem 3(c), which satisfy

[Yα, Yβ] = Cγ
αβYγ .

Let {Y γ∗} be the dual basis, satisfying

Y γ∗(Yα) = δγ
α.

Step 1: Express the dual basis in coordinates. Write

Y γ∗ = (Y γ∗)µ dx
µ, Yα = (Yα)ν ∂ν .

The duality condition becomes

(Y γ∗)µ(Yα)µ = δγ
α. (1)

Step 2: Differentiate the duality identity. Apply ∂ν to both sides of (1):

∂ν
(
(Y γ∗)µ(Yα)µ) = 0.

Expand:
(∂ν(Y γ∗)µ)(Yα)µ + (Y γ∗)µ(∂ν(Yα)µ) = 0. (2)

Step 3: Use the definition of the structure constants. From

[Yα, Yβ]µ = (Yα)ν∂ν(Yβ)µ − (Yβ)ν∂ν(Yα)µ = Cγ
αβ(Yγ)µ,

rearrange to isolate ∂ν(Yα)µ and use it in (2). Now antisymmetrize in µ and ν:

∂ν(Y γ∗)µ − ∂µ(Y γ∗)ν = Cγ
αβ(Y α∗)µ(Y β∗)ν .

This is exactly the desired identity.

5. Let Y1, . . . , Yn be smooth vector fields on an n-dimensional manifold M which form a basis of
Vp at each p ∈ M . Suppose [Yα, Yβ] = 0 for all α, β. Prove that in a neighborhood of each
p ∈M there exist coordinates y1, . . . , yn such that Y1, . . . , Yn are the coordinate vector fields,
Yµ = ∂/∂yµ. (Hint: In an open ball of Rn, the equations ∂f/∂xµ = Fµ with µ = 1, . . . , n
for the unknown function f have a solution if and only if ∂Fµ/∂x

ν = ∂Fν/∂x
µ. [See the end

of section B.1 of appendix B for a statement of generalizations of this result.] Use this fact
together with the results of problem 4(b) to obtain the new coordinates.)

6. (a) Verify that the dual vectors {vµ∗} defined by equation (2.3.1) constitute a basis of V ∗.
(b) Let v1, . . . , vn be a basis of the vector space V , and let v1∗, . . . , vn∗ be its dual basis. Let

w ∈ V and let ω ∈ V ∗. Show that

w =
∑

α

vα∗(w) vα, ω =
∑

α

ω(vα) vα∗.
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(c) Prove that the operation of contraction, equation (2.3.2), is independent of the choice of
basis.

7. Let V be an n-dimensional vector space and let g be a metric on V .
(a) Show that one always can find an orthonormal basis v1, . . . , vn of V , i.e. a basis such

that g(vα, vβ) = ±δαβ. (Hint: Use induction.)
(b) Show that the signature of g is independent of the choice of orthonormal basis.

8. (a) The metric of flat, three-dimensional Euclidean space is

ds2 = dx2 + dy2 + dz2.

Show that the metric components gµν in spherical polar coordinates r, θ, ϕ, defined by

r = (x2 + y2 + z2)1/2, cos θ = z/r, tanϕ = y/x,

are given by
ds2 = dr2 + r2dθ2 + r2 sin2 θ dϕ2.

(b) The spacetime metric of special relativity is

ds2 = −dt2 + dx2 + dy2 + dz2.

Find the components gµν and gµν of the metric and inverse metric in “rotating coordinates,”
defined by

t′ = t, x′ = (x2 + y2)1/2 cos(ϕ− ωt), y′ = (x2 + y2)1/2 sin(ϕ− ωt), z′ = z,

where tanϕ = y/x.
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Chapter 3

Curvature

Imagine that our one–dimensional beings from the previous chapter have now learned to compare
vectors at different points along their line. They can say whether the “direction” of a quantity
changes as they move. Now suppose their universe were two–dimensional. They carry a little arrow
(a vector) and drag it carefully around a closed path, always trying to keep it pointing “the same
way.” When they return to where they started, the arrow has rotated slightly. Something about the
surface itself has twisted their notion of “sameness.”

That twist is what we call curvature. It is not about how a surface bends in some higher space, but
how parallelism itself behaves within the manifold.

Curvature measures the failure of vectors to return unchanged after parallel transport
around a closed loop.

3.1 Chapter Summary

In this chapter, we finally give mathematical meaning to what we call the curvature of spacetime.

We start with a simple question: how do we tell whether a space is curved without looking at it
from the outside? For a surface like a sphere, we can see it bending in three-dimensional space, but
spacetime doesn’t live inside anything higher-dimensional that we can peek at. So, we need a way
to describe curvature using only information that lives within the manifold itself.

To do that, we first learn how to compare vectors at different points on a manifold. Each point has
its own tangent space, its own little copy of “directions”, and there is no built-in rule that tells us
how to say whether a direction at one point is “the same” as a direction at another. So we invent
such a rule. That rule is called a derivative operator or connection, and it tells us how to parallel
transport vectors along curves so that they “stay pointing the same way” according to the geometry
of the manifold.

Once we know how to transport vectors, we can ask what happens if we carry one all the way
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around a small closed loop and come back to the starting point. If the vector returns unchanged,
the space is flat. If it comes back rotated, the space is curved. This failure to come back unchanged
is the essence of curvature.

Mathematically, that failure shows up as the fact that if you take two covariant derivatives in
different orders, they don’t quite cancel each other out. The amount by which they fail to commute
defines the curvature tensor, a precise, coordinate-free measure of how the geometry twists and
turns.

We then connect this idea to geodesics, the straightest possible paths in the manifold. In curved
space, two geodesics that start out parallel can begin to converge or diverge, this is encoded in
the geodesic deviation equation, which expresses curvature in terms of the relative acceleration of
nearby free-falling particles.

Finally, we learn practical ways to compute curvature once a metric is given: how to find the
connection coefficients, build the Riemann curvature tensor, and contract it to get familiar quantities
like the Ricci tensor and scalar curvature.

3.2 Derivative Operators and Parallel Transport

To talk about curvature, we must first learn how to compare tensors at different points on a manifold.
The tangent spaces TpM and TqM are distinct vector spaces, so there is no natural way to say
that a vector at p “equals” a vector at q. We therefore introduce additional structure: a derivative
operator (or connection) ∇.

Geometrically, ∇ encodes how vectors and tensors change as we move infinitesimally along curves
on M . Operationally, it defines how to take derivatives of tensor fields in a way that respects the
tensor algebra of M .

Remark (Abstract vs. Component Indices). The symbols a1, . . . , ak and b1, . . . , bl are
abstract indices—they label the tensor’s type, not its components. Upper indices correspond
to contravariant (vector) slots, lower indices to covariant (covector) slots. They tell us how
the tensor contracts or transforms, but do not take numerical values until a coordinate basis is
chosen.
For example, a rank (3, 2) tensor field T a1a2a3

b1b2 ∈ T (3, 2) assigns to each point p ∈M a tensor
T a1a2a3

b1b2(p) ∈ T (3,2)
p M , which is a multilinear map taking two vectors and three covectors at

p and returning a real number.

Definition 3.1. Derivative Operator A derivative operator ∇ is a map that takes a
smooth tensor field

T a1···ak
b1···bl

∈ T (k, l)

to another tensor field
∇cT

a1···ak
b1···bl

∈ T (k, l + 1)

such that the following five properties hold.
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Five Defining Properties of a Derivative Operator

1. Linearity. For all tensor fields A,B and scalars α, β ∈ R,

∇c(αAa1···ak
b1···bl

+ βBa1···ak
b1···bl

) = α∇cA
a1···ak

b1···bl
+ β∇cB

a1···ak
b1···bl

.

2. Leibniz Rule. For A ∈ T (k, l) and B ∈ T (k′, l′),

∇e(Aa1···ak
b1···bl

Bc1···ck′
d1···dl′ ) = (∇eA

a1···ak
b1···bl

)Bc1···ck′
d1···dl′

+Aa1···ak
b1···bl

(∇eB
c1···ck′

d1···dl′ ).

3. Commutativity with Contraction. Derivative operators commute with index contrac-
tion:

∇d(Aa1···ak
b1···ad···bl

) = ∇d(Aa1···ak−1
b1···bl

).

4. Consistency with Directional Derivatives. For any smooth function f ∈ F (M) and
any vector field ta,

t(f) = ta∇af.

Thus, ∇af is the covariant generalization of the ordinary directional derivative of f .
5. Torsion-Free Condition. For all smooth functions f ,

∇a∇bf = ∇b∇af.

This states that the derivative operator has no torsion.

In general relativity, we always assume torsion-free derivative operators, unless stated otherwise.
Remark. Here T (k, l) denotes the space of smooth tensor fields of type (k, l) on M . That is, for
each point p ∈M , a field T ∈ T (k, l) assigns a tensor T (p) ∈ T (k,l)

p M , smoothly varying with p.

Geometric Intuition for the Five Properties

• (1) Linearity: Differentiation is a linear operation, just as in calculus. The rate of change
of a linear combination is the same linear combination of rates of change.

• (2) Leibniz Rule: The product rule ensures that the derivative respects tensor multipli-
cation. Without this, the derivative would not be compatible with the tensor algebra of
the manifold.

• (3) Contraction: Contraction is purely algebraic; differentiation should not interfere with
it. This guarantees that derived tensors have the same index behavior as the originals.

• (4) Directional Derivative: On scalar fields, ∇ must reduce to the familiar notion of
differentiation along a vector field. This anchors ∇ to our geometric intuition of change
along flow lines.

• (5) Torsion-Free: Moving infinitesimally along two directions in different orders should
lead to the same endpoint. The failure of this closure defines the torsion tensor. Setting
torsion to zero ensures infinitesimal parallelograms on M close. Tangent spaces always
exist at every point, but torsion-free means that the way we slide those tangent vectors
along curves (via parallel transport) doesn’t introduce any twist that would make the
notion of “tangency” inconsistent.
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Commutator of Vector Fields

Using properties (4) and (5) with the Leibniz rule, we can express the Lie bracket of two vector
fields va and wa in terms of the derivative operator ∇a.

For any smooth function f ,

[v, w](f) = v{w(f)} − w{v(f)}
= va∇a(wb∇bf)− wa∇a(vb∇bf)
= (va∇aw

b − wa∇av
b)∇bf.

Since this holds for all f , we obtain the component expression:

[v, w]b = va∇aw
b − wa∇av

b.

This shows that the commutator of two vector fields can be written purely in terms of the derivative
operator.

Torsion Tensor (Optional)

If condition (5) is not imposed, one can define the torsion tensor

T c
ab = −(∇a∇bf −∇b∇af)/(∇cf),

which measures the antisymmetric part of the derivative operator. The torsion-free condition
T c

ab = 0 ensures that ∇a is symmetric in its lower indices when acting on scalar functions.

Existence of Derivative Operators

Up to this point, we have defined what a derivative operator ∇ must do: it takes tensor fields to
tensor fields, satisfies linearity, the Leibniz rule, commutes with contraction, reduces to directional
derivatives on scalars, and is torsion-free. These conditions are axiomatic, they describe how a
derivative should behave on a manifold. But we have not yet shown that such operators actually
exist.

Step 1: Constructing a derivative in coordinates.

Given a coordinate system ψ on a region of the manifold M , with coordinates xµ, we can always define
a “derivative operator” using the ordinary partial derivatives of component functions. Let {∂/∂xµ}
and {dxµ} be the associated coordinate bases. For any smooth tensor field T a1···ak

b1···bl
∈ T (k, l),

we define an operator ∂a by taking the partial derivatives of its components in this coordinate basis:

(∂cT )µ1···µk
ν1···νl

= ∂Tµ1···µk
ν1···νl

∂xσ
.
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We call ∂a the ordinary derivative operator associated with the coordinate system ψ.

Because partial derivatives in Rn already satisfy the standard rules of differentiation, this coordinate-
based operator automatically satisfies the five defining properties of a derivative operator:

• Linearity follows from the linearity of partial differentiation.
• The Leibniz rule holds by the product rule for partial derivatives.
• Commutation with contraction is automatic because contraction is algebraic.
• Acting on scalars, ∂af gives the ordinary directional derivative.
• Mixed partial derivatives commute, so the operator is torsion-free.

Thus, in every coordinate system, we can construct such a derivative operator.

Step 2: The catch – coordinate dependence.

The ordinary derivative operator ∂a depends on the choice of coordinates used to define it. If we
choose a different coordinate system ψ′ with coordinates xµ′ , then the same tensor field T will
have new components Tµ′

1···µ′
k ν′

1···ν′
l
, and the corresponding partial derivatives ∂′

σT
µ′

1···µ′
k ν′

1···ν′
l

will
generally not transform as the components of a tensor. In other words,

(∂aT )µ1···µk
ν1···νl

and (∂′
aT )µ′

1···µ′
k ν′

1···ν′
l

are not related by the tensor transformation law. This means that the operator ∂a is not a geometric
object; it depends on the coordinate system in which it was defined.

Step 3: The conceptual lesson.

This construction shows that derivative operators do exist in a purely formal sense: in any coordinate
patch, we can always take partial derivatives of tensor components. However, this “ordinary
derivative” is coordinate dependent and therefore not intrinsic to the manifold. The manifold itself
does not come equipped with a canonical notion of how to compare vectors or tensors at different
points. Partial derivatives depend on how we label points with coordinates.

To obtain a derivative operator that is truly geometric, one that produces tensors independent of any
coordinate system, we must add additional structure to the manifold: a connection. The connection
modifies the coordinate-based derivative by adding correction terms (connection coefficients) that
transform in such a way that the full covariant derivative ∇aT

b1···bk
c1···cl

does transform tensorially.

Summary.

• Ordinary partial differentiation defines a derivative operator in any coordinate system.
• This operator satisfies the five conditions but depends on the chosen coordinates.
• Therefore, it is not naturally associated with the geometry of the manifold.
• To define a coordinate-independent derivative, we introduce a connection in the next section.
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Uniqueness of Derivative Operators

Having shown that derivative operators exist (at least in coordinate systems), we now ask: how
unique are they? In other words, can there be more than one derivative operator on the same
manifold, and if so, how might they differ?

Step 1: Agreement on scalar fields.

By condition (4), all derivative operators must act identically on scalar fields:

∇af = ∇̃af

for any smooth function f ∈ F . Thus, any difference between two derivative operators ∇a and ∇̃a

can only appear when they act on tensors of rank one or higher.

Step 2: Investigating their difference on covector fields.

Let ωb be a smooth covector field. Consider the difference

(∇̃a −∇a)ωb.

To understand what kind of object this is, let us multiply ωb by an arbitrary scalar field f and apply
both derivative operators. Using the Leibniz rule for each, we find

∇̃a(fωb)−∇a(fωb) = (∇̃af)ωb + f ∇̃aωb − (∇af)ωb − f ∇aωb

= f(∇̃aωb −∇aωb),

since ∇̃af = ∇af by condition (4). Hence,

∇̃a(fωb)−∇a(fωb) = f(∇̃aωb −∇aωb). (3.1.3)

This shows that the difference depends only on the value of ωb at the point where the derivative is
taken, not on how ωb varies nearby.

Note on Locality and the Cancellation in (3.1.3).
A derivative operator ∇a always depends on how a field varies in a neighborhood of a point. For
a scalar f ,

∇af(p)

measures the infinitesimal change of f near p; it is not determined solely by the value of f at p.
Thus, any expression containing ∇af includes information about nearby values of f . Whereas
a covector ωb(p) lives entirely in the cotangent space T ∗

pM and depends only on its value at
p. Thus, for (∇̃a −∇a) to be a tensor, all terms involving ∇af must cancel, leaving a purely
pointwise, linear operation on ωb(p).

Step 3: Linearity and pointwise dependence.

At any point p, both ∇aωb and ∇̃aωb depend on the local behavior of ωb, but their difference
depends only on ωb(p). To see this, suppose ω′

b is another covector field such that ω′
b(p) = ωb(p).
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Then, following Wald’s argument:

(∇̃a −∇a)(ω′
b − ωb) = 0 at p.

Hence,
(∇̃a −∇a)ω′

b = (∇̃a −∇a)ωb at p. (3.1.6)

Therefore, the difference operator is linear and pointwise: it depends only on the value of the field
at p, not its derivatives.

Step 4: The difference as a tensor field.

Any operation that is linear and depends only on the value of its argument at a single point is itself
a tensor. Thus, we define a smooth tensor field Ca

bc of type (1, 2) by

(∇̃b −∇b)va = Ca
bc v

c,

for every vector field va. This tensor Ca
bc describes how one derivative operator differs from another.

By construction, Ca
bc is linear in va, and because the difference vanishes on scalar fields, it is purely

tensorial—it transforms covariantly under coordinate changes.

Step 5: Conceptual meaning.

This result is extremely important. It tells us that:

• There is not just one derivative operator on a manifold. Infinitely many exist, and they can
differ by a tensor Ca

bc.
• The space of all derivative operators forms an affine space: given any one operator ∇a, adding

a tensor Ca
bc defines a new one ∇̃a = ∇a + Ca

bc.
• Later, when we choose coordinates, the components Ca

bc will appear as the familiar connection
coefficients or Christoffel symbols.

Step 6: Relation to coordinate derivatives.

The “ordinary” derivative operators ∂a defined in different coordinate systems are examples of
distinct derivative operators. The tensor Ca

bc between them encodes how their definitions differ.
When we later introduce the metric, we will use it to single out one particular connection—the
Levi-Civita connection—by requiring it to be both torsion-free and compatible with the metric:

∇agbc = 0.

Summary.

• All derivative operators agree on scalars but may differ on higher tensors.
• The difference between any two derivative operators is a tensor field Ca

bc of type (1, 2).
• This tensor represents how different coordinate or connection choices shift the notion of

differentiation on the manifold.
• In coordinates, its components become the Christoffel symbols.
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Difference of Derivative Operators on Dual Vector Fields

Previously we showed that the difference between any two derivative operators ∇a and ∇̃a is
described by a tensor field Ca

bc of type (1, 2):

(∇̃b −∇b)va = Ca
bcv

c.

We now examine how this relation appears when the operators act on covector fields (dual vectors)
rather than vector fields.

Step 1: Action on dual vectors.

Let ωb be a smooth covector field. Because the derivative operator acts linearly and satisfies the
Leibniz rule, the difference between ∇̃a and ∇a must again depend only on the value of ωb at the
point p. We therefore define

∇aωb = ∇̃aωb − Cc
ab ωc. (3.1.7)

This shows explicitly how two derivative operators can disagree in their action on dual vector fields:
the tensor Cc

ab measures that disagreement.

Because ∇a lowers an index and ∇̃a acts on the same covector, the correction term enters with a
minus sign— a reflection of how dual vectors transform contragrediently to ordinary vectors.

Step 2: Symmetry from torsion-freeness.

Condition (5) (the torsion-free requirement) implies that for any smooth scalar field f , the second
derivatives commute:

∇a∇bf = ∇b∇af.

Using this property, we can infer a symmetry of Cc
ab. Let ωb = ∇bf = ∇̃bf . Then, applying

equation (3.1.7),
∇a∇bf = ∇̃a∇̃bf − Cc

ab∇cf. (3.1.8)

Since both ∇a∇bf and ∇̃a∇̃bf are symmetric in a and b, the correction term must also be symmetric:

Cc
ab = Cc

ba. (3.1.9)

Thus, the tensor Cc
ab is symmetric in its lower indices whenever the derivative operators are

torsion-free.

Step 3: Geometric meaning.

This symmetry expresses the same geometric condition that the Christoffel symbols later satisfy:

Γa
bc = Γa

cb.

Torsion-free means that parallel transport around an infinitesimal closed loop does not depend on
the order of motion along the two directions. In a curved but torsion-free spacetime, basis vectors
may rotate under transport, but they do not “twist” independently of the curvature.

Summary.
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• For covector fields, the difference of two derivative operators is ∇aωb = ∇̃aωb − Cc
abωc.

• The tensor Cc
ab measures their possible disagreement.

• Under the torsion-free condition, Cc
ab is symmetric in its lower indices: Cc

ab = Cc
ba.

• This symmetry will reappear for the Christoffel symbols of the Levi-Civita connection.

Extending the Difference Tensor to All Tensor Fields

We have shown that for any two derivative operators ∇a and ∇̃a, their difference is described by a
tensor field Ca

bc of type (1, 2), symmetric in its lower indices. This tensor measures how the two
operators “disagree” when acting on vector and covector fields. We now extend this to tensors of
arbitrary rank.

Step 1: Acting on a vector field.

Let ta be a smooth vector field and ωa a one-form field. By property (4) of derivative operators
(compatibility with contraction),

(∇̃a −∇a)(ωbt
b) = 0. (3.1.10)

Using the Leibniz rule, we expand:

(∇̃a −∇a)(ωbt
b) = (Cc

ab ωc)tb + ωb(∇̃a −∇a)tb. (3.1.11)

Since this must vanish for all ωb, we find

∇at
b = ∇̃at

b + Cb
act

c. (3.1.13)

Thus, Cb
ac provides the correction needed to translate between the two derivative operators on

vector fields.

Step 2: Acting on general tensors.

Applying the same reasoning repeatedly, we can write the difference of ∇a and ∇̃a acting on any
tensor field T b1···bk

c1···cl
as

∇aT
b1···bk

c1···cl
= ∇̃aT

b1···bk
c1···cl

+
k∑

i=1
Cbi

ad T
b1···d···bk

c1···cl
−

l∑
j=1

Cd
acj T

b1···bk
c1···d···cl

. (3.1.14)

Each contravariant index contributes a + correction term, and each covariant index contributes a −
correction term, reflecting how vectors and covectors transform oppositely.

Step 3: Interpretation.

The tensor Ca
bc completely characterizes the difference between any two derivative operators: if

we know ∇̃a and Ca
bc, we can reconstruct ∇a. Conversely, for any smooth symmetric tensor field

Ca
bc, the operator ∇a defined by equation 3.1.14 satisfies all five defining properties of a derivative

operator.
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Geometric Meaning. The object Ca
bc describes how the “rule of differentiation” is modified

from one connection to another. It encodes how the notion of parallelism changes across the
manifold. In coordinates, Ca

bc will become the familiar Christoffel symbol, which corrects the
partial derivative to account for the curvature or twisting of the coordinate basis.

Freedom in Choosing a Derivative Operator and the Christoffel Symbols

Equation (3.1.14) shows that the difference between two derivative operators∇a and ∇̃a is completely
determined by a smooth tensor field Ca

bc, symmetric in its lower indices. Conversely, given any such
Ca

bc, we can define a new derivative operator ∇a by adding the correction terms in equation (3.1.14).
Thus, the manifold structure alone does not select a unique derivative operator—there is considerable
freedom.

Degrees of freedom. On an n-dimensional manifold, a symmetric tensor Ca
bc has

n2(n+ 1)
2

independent components at each point. Each possible choice of these components defines a different
derivative operator ∇a. Hence, an ordinary manifold M admits infinitely many distinct derivative
operators, none of which is naturally preferred unless additional structure, such as a metric, is
introduced.

Ordinary derivative operator and Christoffel symbols. A particularly useful special case
occurs when we take ∇̃a to be the ordinary derivative operator ∂a associated with some coordinate
system. Then the difference tensor is denoted by

Γa
bc ≡ Ca

bc,

and is called a Christoffel symbol. Equation (3.1.13) becomes

∇at
b = ∂at

b + Γb
act

c. (3.1.15)

Here the partial derivative ∂at
b captures the coordinate variation of the components of tb, while the

Γb
ac term corrects for how the basis vectors themselves change from point to point.

Coordinate dependence. Because the coordinate basis {∂/∂xµ} changes under coordinate
transformations, the associated ordinary derivative operator ∂a also changes. When we change
coordinates from xµ to xµ′ , we replace ∂a by ∂a′ and the Christoffel symbols Γa

bc by new symbols
Γa′

b′c′ that are not related by the usual tensor transformation law. This shows that Christoffel
symbols are not tensors; they depend on both the derivative operator and the coordinate system
used to define it.

Summary.
• A manifold by itself admits many derivative operators.
• Each operator differs from any other by a symmetric tensor Ca

bc.
• Choosing ∇̃a = ∂a makes Ca

bc the Christoffel symbols Γa
bc.
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• The Christoffel symbols are not tensor components—they change inhomogeneously with
the coordinates.

Metric Compatibility and the Levi–Civita Condition

So far, we have seen that a manifold admits infinitely many possible derivative operators, each
corresponding to a different tensor Ca

bc or, in coordinates, a different set of Christoffel symbols Γa
bc.

No particular choice is preferred by the manifold itself. However, if the manifold is equipped with a
metric gab, the metric provides a natural way to single out one distinguished derivative operator.

Preservation of inner products.

Suppose we parallel transport two vector fields va and wa along a curve with tangent ta. It is
natural to require that their inner product gabv

awb remain constant along the curve:

ta∇a(gbcv
bwc) = 0. (3.1.20)

This expresses the idea that parallel transport should not change lengths or angles as measured by
the metric.

Using the Leibniz rule and the condition that va and wa are parallel transported (ta∇av
b = ta∇aw

b =
0), we obtain

tavbwc∇agbc = 0. (3.1.21)

Since this must hold for all curves and for all parallely transported vectors, we conclude that the
derivative operator must satisfy

∇agbc = 0. (3.1.22)

Metric compatibility. Equation 3.1.22 is called the metric compatibility condition. It ensures
that the derivative operator ∇a preserves the metric under parallel transport:

∇agbc = 0 ⇐⇒ ∇ag
bc = 0.

In geometric terms, the connection “respects” the geometry defined by gab—the inner product of
any two parallely transported vectors is invariant along a curve.

Physical and Geometric Meaning. Metric compatibility encodes the principle that spacetime
has no preferred directions or distortions: parallel transport preserves the notions of length
and angle defined by the metric. Together with the torsion-free condition (Ca

bc = Ca
cb), it

uniquely determines the derivative operator. This unique connection is known as the Levi–Civita
connection.

The Levi–Civita Connection: Existence, Uniqueness, and Formula

We now show that on a (pseudo-)Riemannian manifold (M, g) there exists a unique torsion-free,
metric-compatible derivative operator. This distinguished connection is the Levi–Civita connection.
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Theorem 3.1 (Levi–Civita). Let (M, g) be a smooth manifold with metric gab. Then there exists
a unique derivative operator ∇a satisfying:

1. Torsion-free: ∇a∇bf = ∇b∇af for all smooth functions f (equivalently, T c
ab = 0);

2. Metric-compatible: ∇agbc = 0.

Geometric meaning of torsion-freeness. The Christoffel symbols encode how neighboring
tangent spaces are “tilted” relative to one another when a vector is carried from one point to
the next. They describe the adjustment needed for a vector to remain “as constant as possible”
on a curved manifold. The torsion-free condition removes the twisting or curl-like part of this
adjustment: it requires that taking a small step in one coordinate direction and then in another
leads to the same result as reversing the order of the steps, so infinitesimal parallelograms close.
What remains after eliminating this twist is the purely dot-product-preserving part determined
by the metric. Thus torsion-freeness removes the “swirl” in how tangent spaces relate, while
metric-compatibility fixes the remaining “tilt,” uniquely producing the Levi–Civita connection.

Uniqueness of the Levi–Civita Connection

Suppose we have two derivative operators (connections) on the same manifold with metric gab:

∇a and ∇̃a,

and assume that both satisfy:

1. Torsion-free:
∇a∇bf = ∇b∇af, ∇̃a∇̃bf = ∇̃b∇̃af,

equivalently
Γc

ab = Γc
ba, Γ̃c

ab = Γ̃c
ba.

2. Metric-compatible:
∇agbc = 0, ∇̃agbc = 0.

We show that these two connections must be identical.

Step 1: Define the difference operator

For any vector field vc, define
(∇̃a −∇a)vc = Cc

ab v
b. (3.1)

Since the left-hand side is linear in vb and depends only on the value of vb at a point, this defines a
smooth tensor field Cc

ab of type (1, 2).
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Step 2: Identify Cc
ab with the difference of Christoffel symbols

In a coordinate chart,

∇av
c = ∂av

c + Γc
abv

b, ∇̃av
c = ∂av

c + Γ̃c
abv

b.

Subtracting gives
(∇̃a −∇a)vc = (Γ̃c

ab − Γc
ab) vb.

Comparing with (3.1) and using that this holds for all vb, we obtain

Cc
ab = Γ̃c

ab − Γc
ab. (3.2)

Step 3: Torsion-free condition implies symmetry

Torsion-free means
Γc

ab = Γc
ba, Γ̃c

ab = Γ̃c
ba.

Using (3.2),
Cc

ab = Γ̃c
ab − Γc

ab = Γ̃c
ba − Γc

ba = Cc
ba.

Thus
Cc

ab = Cc
ba. (3.3)

Step 4: Apply metric compatibility

Consider the difference of the two metric-compatibility conditions:

0 = (∇̃a −∇a)gbc.

Using Eq. 3.1.14 the covariant derivative of a (0, 2) tensor is

∇agbc = ∂agbc − Γd
abgdc − Γd

acgbd,

and similarly for ∇̃a, subtracting yields

(∇̃a −∇a)gbc = −Cd
abgdc − Cd

acgbd.

Thus metric-compatibility implies

0 = −Cd
abgdc − Cd

acgbd. (3.4)
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Step 5: Contract with arbitrary vectors and use symmetry

Contract (3.4) with arbitrary vectors Xa, Y b, Zc:

0 = −gdcC
d

abX
aY bZc − gbdC

d
acX

aY bZc.

Using the symmetry Cd
ab = Cd

ba from (3.3), interchange of b and c leaves the expression unchanged.
Because X,Y, Z are arbitrary, the only possible solution is

Cd
ab = 0 everywhere.

Conclusion

Since the difference tensor vanishes,

(∇̃a −∇a)vc = 0 ∀vc,

we obtain
∇̃a = ∇a.

Hence the torsion-free, metric-compatible connection is unique.

Existence of the Levi–Civita Connection (Fully Expanded)

To prove existence, we start with:

(M, g) a smooth (pseudo-)Riemannian manifold.

Our goal: construct a derivative operator ∇a that is

1. torsion-free, and
2. metric-compatible: ∇agbc = 0.

Step 1: Start with any torsion-free connection

Choose any torsion-free derivative operator ∇̃a. For example: the ordinary partial derivative
operator ∂a in a coordinate patch.

By definition of a covariant derivative on vector fields:

∇̃av
c = ∂av

c + Γ̃c
abv

b,

where Γ̃ is symmetric in a, b (torsion-free condition).



3.2 Derivative Operators and Parallel Transport 53

Step 2: Modify it by adding a (1, 2) tensor

Define a new operator ∇a by
∇av

c := ∇̃av
c + Cc

abv
b, (3.5)

where Cc
ab is not yet chosen.

Since:

- ∇̃ is a derivative operator, and - adding a (1, 2) tensor multiplied by vb preserves linearity and
Leibniz rules,

any such choice of Cc
ab produces a valid derivative operator.

We now choose C so that ∇ is metric-compatible.

Step 3: Compute the metric derivative under the new ∇

Apply ∇a to gbc. Using definition (3.5) and the general formula for covariant derivatives of a (0, 2)
tensor:

∇agbc = ∇̃agbc − Cd
abgdc − Cd

acgbd.

We want metric compatibility, so we impose

∇agbc = 0.

Thus:
0 = ∇̃agbc − Cd

abgdc − Cd
acgbd. (3.6)

This is an algebraic equation for Cc
ab.

Step 4: Solve for Cc
ab

We will symmetrize and permute indices to isolate C.

First, write the metric-compatibility condition three times with permuted indices:

(1) 0 = ∇̃agbc − Cd
abgdc − Cd

acgbd,

(2) 0 = ∇̃bgca − Cd
bcgda − Cd

bagcd,

(3) 0 = ∇̃cgab − Cd
cagdb − Cd

cbgad.
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Now add equations (1) and (2), then subtract equation (3):

∇̃agbc + ∇̃bgca − ∇̃cgab

=
(
Cd

abgdc + Cd
acgbd + Cd

bcgda + Cd
bagcd − Cd

cagdb − Cd
cbgad

)
.

Use the symmetries
Cd

ab = Cd
ba, gab = gba.

Then the following pairs cancel:

Cd
acgbd − Cd

cagdb = 0, Cd
bcgda − Cd

cbgad = 0.

Thus the right-hand side reduces to

2Cd
abgdc.

Therefore we obtain the identity

∇̃agbc + ∇̃bgac − ∇̃cgab = 2Cd
abgdc.

Multiply both sides by the inverse metric gce taking advantage of the fact that gcegdc = δe
d:

Ce
ab = 1

2 g
ce
(
∇̃agbc + ∇̃bgac − ∇̃cgab

)
.

Relabel index e→ c to match conventions:

Cc
ab = 1

2 g
cd
(
∇̃agbd + ∇̃bgad − ∇̃dgab

)
. (LC–abstract)

This is the unique tensor that makes ∇g = 0.

Step 5: Check torsion-freeness

Because ∇̃ is torsion-free and Cc
ab = Cc

ba is symmetric in (a, b),

∇av
c −∇bv

c = (∇̃a − ∇̃b)vc + Cc
abv

b − Cc
bav

a = 0.

So ∇ is also torsion-free.
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Thus ∇ satisfies:

- ∇g = 0 - torsion-free

so it is the Levi–Civita connection.

3.3 Curvature

In the previous section we developed the notion of a derivative operator ∇a (also called a connection)
and showed how it determines the parallel transport of vectors and tensors along curves. We are
now ready to use parallel transport to define curvature.

The starting point is the observation that parallel transport is generally path–dependent: transporting
a vector from p to q along two different curves need not give the same result. Equivalently, a vector
transported around a small closed loop will typically fail to return to its original direction. This
failure is the geometric content of curvature.

The infinitesimal form of this idea is encoded in the failure of covariant derivatives to commute.
Let ∇a be any derivative operator and let ωc be a smooth dual vector field. For a scalar field f we
compute

∇a∇b(fωc) = ∇a
(
ωc∇bf + f∇bωc

)
(3.7)

= (∇a∇bf)ωc + (∇bf)∇aωc + (∇af)∇bωc + f ∇a∇bωc. (3.2.1)

If we subtract from this the expression with a and b exchanged, the first three terms cancel pairwise,
yielding

(∇a∇b −∇b∇a)(fωc) = f (∇a∇b −∇b∇a)ωc. (3.2.2)

As in our earlier analysis of derivative operators, this identity shows that the commutator (∇a∇b −
∇b∇a)ωc at a point p depends only on the value of ωc at p, not on its behavior nearby. Thus the
map

ωc 7−→ (∇a∇b −∇b∇a)ωc

is linear on T ∗
pM and hence defines a tensor of type (1, 3) at p.

Definition 3.2 (Riemann curvature tensor). There exists a unique tensor field Rabc
d such that for

all dual vector fields ωc,
(∇a∇b −∇b∇a)ωc = Rabc

d ωd. (3.2.3)

This tensor Rabc
d is called the Riemann curvature associated with the derivative operator ∇a.

3.3.1 Curvature and Parallel Transport Around a Loop

We now relate the curvature tensor Rabc
d to the failure of a vector to return to its original value

when parallel transported around a closed loop. Let p ∈M and choose a two–dimensional surface S
through p. Introduce local coordinates (t, s) on S and choose these so that p corresponds to (0, 0).
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Consider the small rectangular loop shown in Fig. 3.1:

(0, 0) → (∆t, 0) → (∆t,∆s) → (0,∆s) → (0, 0).

Let va be a vector at p (not assumed tangent to S), and let us parallel transport va around the
loop. We compute the resulting change in va by evaluating the change in the scalar vaωa for an
arbitrary dual vector field ωa.

Figure 3.1: Parallel transport of a vector va around a small rectangular loop in the (t, s) surface
through p. As derived in the text, the second–order change in va is governed by the Riemann tensor.

First–order variations (in detail). Along the first leg of the loop we move from (0, 0) to (∆t, 0),
i.e. along the curve

γ(t) = (t, 0), 0 ≤ t ≤ ∆t.

We are interested in the change in the scalar field vaωa between the endpoints of this segment. To
first order in ∆t, a Taylor expansion about the midpoint t = ∆t/2 gives

δ1 = (vaωa)
∣∣
(∆t,0) − (vaωa)

∣∣
(0,0) ≈ ∆t ∂

∂t
(vaωa)

∣∣∣∣
(∆t/2,0)

. (3.2.4)

Now, the curve γ(t) has tangent vector

T b =
(
∂

∂t

)b

,

which is simply the coordinate basis vector ∂/∂t restricted to the surface S along the line s = 0.
Since vaωa is a scalar field, its derivative along the curve is its directional derivative in the direction
T b:

∂

∂t
(vaωa) = T b∇b(vaωa),

because for scalars f we have ∇bf = ∂bf by property (4) of the derivative operator.1 Thus we may
rewrite (3.2.4) as

δ1 = ∆t T b∇b(vaωa)
∣∣
(∆t/2,0).

1More explicitly, d

dt
f(γ(t)) = ∂xb

∂t
∂bf = T b∂bf = T b∇bf .
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Next we use the Leibniz rule for ∇b acting on the product of a vector and a covector:

∇b(vaωa) = (∇bv
a)ωa + va∇bωa.

Contracting with T b gives

T b∇b(vaωa) = (T b∇bv
a)ωa + vaT b∇bωa.

However, by construction va is being parallel transported along the t–curves, whose tangent is T b.
The definition of parallel transport (eq. (3.1.16)) therefore tells us

T b∇bv
a = 0

along this leg of the loop. Hence the first term above vanishes and we are left with

T b∇b(vaωa) = vaT b∇bωa.

Substituting back into the expression for δ1, we obtain

δ1 = ∆t vaT b∇bωa

∣∣
(∆t/2,0). (3.2.5)

Recap of this step.
• We first view vaωa as a scalar field and expand its change along the curve s = 0 using
δ1 ≈ ∆t ∂t(vaωa).

• The scalar derivative ∂t is the directional derivative in the direction of the tangent T b, so
∂t(vaωa) = T b∇b(vaωa).

• Applying the Leibniz rule and using the fact that va is parallel transported (T b∇bv
a = 0)

kills one term, leaving only vaT b∇bωa.
This is why the term involving ∇bv

a disappears in eq. (3.2.5).

Second–order contributions. To evaluate the difference in brackets to first order in ∆s, we
move along the curve s 7→ s+ ∆s with t = ∆t/2. Parallel transport is path–independent to first
order, so va at (∆t/2,∆s) equals the parallel transport of va at (∆t/2, 0). However,

T b∇bωa

∣∣
(∆t/2,∆s) = T b∇bωa

∣∣
(∆t/2,0) + ∆s Sc∇c(T b∇bωa),

where Sc = ∂/∂s is the tangent to curves of constant t. Thus,

δ1 + δ3 = −∆t∆s vaSc∇c(T b∇bωa). (3.2.7)

Repeating the calculation for δ2 + δ4 and adding both contributions, we find the total change

δ(vaωa) = ∆t∆s va{T cSb∇c(∇bωa)− ScT b∇c(∇bωa)
}
.

Using the commutation of partial derivatives of coordinate basis vectors (§2.2) and the definition of
the Riemann tensor (3.2.3), this becomes

δ(vaωa) = ∆t∆s vaT cSb(∇c∇b −∇b∇c)ωa (3.8)
= ∆t∆s vaT cSbRcba

dωd. (3.2.8)
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Since this must hold for all ωa, the change in va itself is

δva = ∆t∆s vd T bScRcbd
a. (3.2.9)

Thus the Riemann tensor directly measures the infinitesimal failure of a vector to return to its
original value after parallel transport around a closed loop.

Curvature Acting on Vector Fields

We now derive the formula for the action of the commutator of covariant derivatives on a vector
field tc. Let ωa be any dual vector field. Using property 5 (torsion–free), the Leibniz rule, and
eq. (3.2.3), we compute

0 = (∇a∇b −∇b∇a)(tcωc) (3.9)
= ∇a(ωc∇bt

c + tc∇bωc)−∇b(ωc∇at
c + tc∇aωc) (3.10)

= ωc(∇a∇b −∇b∇a)tc + tc(∇a∇b −∇b∇a)ωc (3.11)
= ωc(∇a∇b −∇b∇a)tc + tcωdRabc

d. (3.2.10)

Since ωc is arbitrary, we conclude

(∇a∇b −∇b∇a)tc = −Rabd
c td. (3.2.11)

This gives the action of the curvature on vector fields.

Curvature Acting on General Tensors

We have already seen how the commutator of covariant derivatives acts on dual vector fields and
vector fields:

(∇a∇b −∇b∇a)ωc = Rabc
d ωd, (3.2.3)

(∇a∇b −∇b∇a)tc = −Rabd
c td. (3.2.11)

Using the Leibniz rule, these formulas extend to arbitrary tensor fields. By induction on rank one
finds that for a tensor field T c1···ck

d1···dl
,

(∇a∇b −∇b∇a)T c1···ck
d1···dl

= −
k∑

i=1
Rabe

ciT c1···e···ck
d1···dl

+
l∑

j=1
Rabdj

eT c1···ck
d1···e···dl

. (3.2.12)

Each upper index contributes a −R term and each lower index a +R term, exactly as in the simple
vector and covector cases.
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Algebraic Properties of the Riemann Tensor

Wald next establishes four key properties of Rabc
d:

1. Antisymmetry in the first two indices:

Rabc
d = −Rbac

d. (3.2.13)

2. Cyclic (or “first Bianchi”) identity in the lower three indices:

R[abc]
d = 0. (3.2.14)

3. For the Levi–Civita connection ∇a associated with the metric (∇agbc = 0), the Riemann
tensor is antisymmetric on the last pair and obeys the pair-exchange symmetry

Rabcd = −Rabdc, Rabcd = Rcdab. (3.2.15)

4. Differential Bianchi identity:
∇[aRbc]d

e = 0. (3.2.16)

Sketch of the proofs. Property (1) follows directly from the definition (3.2.3) since

(∇a∇b −∇b∇a)ωc = −(∇b∇a −∇a∇b)ωc.

To prove (2), we note that for any dual vector field ωa and any connection ∇a one has

∇[a∇b]ωc = 0, (3.2.17)

when ∇a is chosen to be an ordinary derivative operator ∂a (see Eq. 3.1.14) and we use the symmetry
Cc

ab = Cc
ba of the difference tensor. In differential forms language this is just d2ω = 0. Thus

0 = 2∇[a∇b]ωc = ∇a∇bωc −∇b∇aωc

= (∇a∇b −∇b∇a)ωc = Rabc
d ωd. (3.2.18)

Antisymmetrizing over a, b, c in the last expression yields R[abc]
d = 0, which is (2).

Property (3) makes use of metric-compatibility. Apply the general formula (3.2.12) to the metric
tensor gab. Since ∇agbc = 0, we have

0 = (∇a∇b −∇b∇a)gcd

= Rabc
eged +Rabd

egce = Rabcd +Rabdc. (3.2.19)

This proves Rabcd = −Rabdc. Together with (1) and (2), one can show (see problem 3) that Rabcd

also satisfies
Rabcd = Rcdab. (3.2.20)

Finally, to establish (4), we apply the commutator of covariant derivatives to ∇cωd and use (3.2.12):

(∇a∇b −∇b∇a)∇cωd = Rabc
e∇eωd +Rabd

e∇cωe. (3.2.21)
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On the other hand, we may first commute the covariant derivatives in the other order:

∇a(∇b∇cωd)−∇b(∇a∇cωd) = ∇a(Rbcd
eωe)−∇b(Racd

eωe)
= ωe∇aRbcd

e +Rbcd
e∇aωe − ωe∇bRacd

e −Racd
e∇bωe. (3.2.22)

Antisymmetrizing over a, b, c in (3.2.21) and (3.2.22), the left-hand sides agree. Equality of the
right-hand sides then yields

ωe∇[aRbc]d
e = 0 (3.2.23)

for all ωe, which implies
∇[aRbc]d

e = 0,

i.e. property (4), the differential Bianchi identity (3.2.16).

Ricci Tensor, Scalar Curvature, and Weyl Tensor

Because of the antisymmetries (1) and (3), some traces of the Riemann tensor vanish identically,
but one nontrivial trace remains. Contracting the first and fourth indices gives the Ricci tensor :

Rac ≡ Rabc
b. (3.2.25)

Using the symmetry properties of Rabcd, one can show that Rab is symmetric:

Rac = Rca. (3.2.26)

Contracting the Ricci tensor once more with the metric produces the scalar curvature:

R ≡ Ra
a = gabRab. (3.2.27)

It is often useful to decompose the Riemann tensor into a “trace part” and a “trace–free part.” The
trace–free part is called the Weyl tensor, Cabcd, and for n ≥ 3 is defined by

Rabcd = Cabcd + 2
n− 2

(
ga[cRd]b − gb[cRd]a

)
− 2

(n− 1)(n− 2) Rga[cgd]b. (3.2.28)

The Weyl tensor satisfies the same algebraic symmetries (1), (2), and (3) as Rabcd and is trace-free
on all index pairs. Geometrically, Cabcd encodes the “shape-changing” (conformal) part of curvature,
while the Ricci tensor encodes the part related to volume change.

3.4 Geometric Meaning of Riemann and Ricci Curvature

3.4.1 Riemann Curvature Acting on Vectors and Tensors

The Riemann curvature tensor
Ra

bcd
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measures the failure of second covariant derivatives to commute:

(∇c∇d −∇d∇c)V a = Ra
bcdV

b.

For a vector field V a, this expresses the fundamental fact that parallel transport around an
infinitesimal loop in the c–d directions produces a small “rotation” of V a. In a flat manifold this
commutator vanishes, and the vector returns to its original orientation.

This generalizes naturally to a tensor of type (k, l) as we have seen previously in Eq 3.2.12:

(∇c∇d −∇d∇c)T a1...ak
b1...bl

= −
k∑

i=1
Rai

ecd T
a1...e...ak

b1...bl

+
l∑

j=1
Re

bjcd T
a1...ak

b1...e...bl
.

Each contravariant index of T picks up a curvature term with a minus sign, and each covariant
index picks up a curvature term with a plus sign, reflecting how curvature acts separately on each
vector or covector slot.

Interpretation. Riemann curvature tells you how each index of a tensor fails to return to its
initial orientation after being parallel transported around a small loop. A rank–(k, l) tensor has
k + l independent “failure modes,” one for each index slot.

3.4.2 Why Contracting Riemann Yields the Ricci Tensor

The Ricci tensor is obtained by contracting the first and third indices:

Rbd = Ra
bad.

To understand the meaning of this contraction, it is helpful to examine the index roles in Ra
bcd:

• c and d determine the infinitesimal loop,
• b labels the input vector being parallel transported,
• a labels the output direction after the loop.

Thus the map V b 7→ Ra
bcdV

b is a linear transformation on vectors. Taking its trace over a and b
extracts the overall “net” effect of this transformation.

Geometric meaning. Contracting the Riemann tensor traces over how curvature acts on all
possible directions of the transported vector. The resulting Ricci tensor Rbd captures only the
volume-changing part of the curvature, discarding the purely shape-changing (Weyl) part.
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3.4.3 Ricci Curvature and the Volume of Geodesic Balls

Consider a small ball of freely falling test particles—a geodesic ball. Each particle follows a geodesic
with tangent ua. Their mutual separation vectors ξa obey the geodesic deviation equation:

D2ξa

dτ2 = −Ra
bcd u

bud ξc.

The volume V (τ) of the ball evolves according to

d2V

dτ2 = −Rabu
aub V.

Meaning. The Riemann tensor governs how individual separation vectors between nearby
geodesics bend. The Ricci tensor, being the trace of Riemann, governs how the entire ball
expands or contracts. It measures the local focusing or defocusing of geodesic flows.

3.4.4 Index Interpretation Summary

The Riemann tensor has type (1, 3):

Ra
bcd : TpM × T ∗

pM × T ∗
pM × T ∗

pM → R.

Its indices have these roles:

• c, d: directions of the infinitesimal loop,
• b: the vector being transported,
• a: resulting change in vector after loop.

Contracting a and b yields
Rcd = Ra

cad,

which eliminates the orientation-changing information and keeps only the volume-changing compo-
nent of curvature.

Contracting the Ricci tensor gives the scalar curvature, which is the overall magnitude (or average
strength) of volume distortion caused by curvature at a point.

Summary.
• Riemann curvature measures the full failure of parallel transport.
• Ricci curvature is its trace, measuring geodesic focusing and volume distortion.
• Scalar curvature R is the trace of Ricci, giving the average curvature in all directions.
• Contracting the Ricci tensor gives the scalar curvature, which is the overall magnitude (or

average strength) of volume distortion caused by curvature at a point.
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Bianchi Identity and Einstein Tensor

Contracting the Bianchi identity (3.2.16) over e and b yields an identity for the Ricci tensor:

∇aRbcd
a +∇bRcd −∇cRbd = 0. (3.2.29)

Raising the index d with the metric and contracting again over b and d, we obtain

∇aR
a

c +∇bR
b
c −∇cR = 0, (3.2.30)

or, equivalently,
∇aGab = 0, (3.2.31)

where
Gab ≡ Rab − 1

2Rgab (3.2.32)

is called the Einstein tensor.

The twice–contracted Bianchi identity ∇aGab = 0 will play a central role in general relativity.
In Einstein’s field equations, Gab = 8πTab, it guarantees the consistency of the equations with
local conservation of energy–momentum, ∇aTab = 0.

Interpretation: From Riemann to Ricci to Scalar Curvature and
the Einstein Tensor
Curvature in general relativity is built hierarchically. Each level of contraction of the Riemann
tensor discards some information and highlights a different geometric feature of spacetime. This
culminates in the Einstein tensor, the unique combination of curvature that can act as the
source of gravity.

Riemann Curvature: Loop Failure and Full Geometric Information

The Riemann tensor Ra
bcd measures the failure of parallel transport around infinitesimal loops:

(∇c∇d −∇d∇c)V a = Ra
bcdV

b.

It captures all aspects of curvature: rotations, shear, tidal effects, and changes in separation
between geodesics. This is the most detailed notion of curvature.

Riemann meaning. Riemann curvature tells how vectors and tensors fail to return to
their original orientation after transport around small loops. It encodes the full tidal and
shape-distorting structure of spacetime.

Ricci Curvature: Focusing of Geodesic Flows (Volume Distortion)

Contracting Riemann on its first and third indices gives the Ricci tensor:

Rbd = Ra
bad.
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This removes the purely shape-changing (Weyl) part of curvature and retains only the component
that affects the volume of small geodesic balls.
If ua is the tangent to a geodesic congruence, then

Rabu
aub

governs whether nearby geodesics focus or defocus. This appears in the Raychaudhuri equation
and determines the second derivative of the volume of a geodesic ball:

d2V

dτ2 = −Rabu
aub V.

Ricci meaning. Ricci curvature measures the volume-changing part of curvature. It tells
whether bundles of geodesics converge (positive Rab) or diverge (negative Rab).

Scalar Curvature: Net Magnitude of Volume Distortion

Tracing the Ricci tensor gives the scalar curvature:

R = gabRab.

This is the average of Ricci curvature over all orthonormal directions. It measures how the
volume of an infinitesimally small geodesic ball compares to that of a ball in flat space:

Vol(Bε) = ωnε
n
(

1− R

6(n+ 2)ε
2 + · · ·

)
.

Scalar curvature meaning. Scalar curvature measures the overall magnitude of volume
distortion. It is the “average curvature” at a point, condensed into a single number.

Einstein Tensor: Divergence-Free Curvature Sourced by Matter

The Einstein tensor is defined by

Gab = Rab − 1
2Rgab.

The Bianchi identity guarantees
∇aGab = 0,

so Gab is the unique rank–(0, 2) tensor built from the metric and its first two derivatives that is
automatically divergence-free.
This property matches the physical requirement that the stress–energy tensor obeys the conser-
vation law ∇aTab = 0, which is why Einstein’s equation takes the form

Gab = 8πTab.

Einstein tensor meaning. The Einstein tensor encodes precisely the part of curvature
responsible for the focusing of geodesic flows, adjusted by its trace so that it satisfies a local
conservation law. It is the geometric quantity that “responds” directly to matter and energy.
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Hierarchy of Curvature (Summary)

Tensor Construction Interpretation

Ra
bcd Full curvature Loop failure, tidal effects

Rab Rc
acb Volume distortion, geodesic focusing

R gabRab Net strength of curvature (average)
Gab Rab − 1

2Rgab Curvature sourced by matter

3.5 Geodesics

3.5.1 Definition via Parallel Transport

Let C be a smooth curve on the manifold M , with affine parameter t. The tangent vector to the
curve is

T a =
(
d

dt

)a

.

A curve is called a geodesic if its tangent vector parallel transports itself along C:

T a∇aT
b = 0. (3.3.1)

This equation expresses the idea that as we move along the curve, the tangent vector does not
“rotate” relative to the connection.

More generally one may allow
T a∇aT

b = αT b, (3.3.2)

where α is a scalar function along the curve. This version permits reparameterizations of the curve,
but the path followed in the manifold is unchanged. Any such curve can be reparameterized so that
the right–hand side of (3.3.2) vanishes, yielding the affinely parametrized form (3.3.1). A parameter
for which (3.3.1) holds is called an affine parameter.

Geometric meaning. The condition

T a∇aT
b = 0

states that the tangent vector is carried along the curve without any additional turning or
twisting beyond what the connection itself dictates. In flat Euclidean space this reduces to
dT i/dt = 0, the condition that a straight line has constant direction. On a curved manifold the
connection encodes how the basis of tangent spaces changes from point to point, and a geodesic
is a curve whose tangent vector remains constant with respect to this changing basis. Thus a
geodesic is “as straight as the geometry allows.”
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3.5.2 Coordinate Expression of the Geodesic Equation

Let γ(t) be a geodesic, and let
xµ(t) := xµ(γ(t))

be its coordinate representation in some chart. The tangent vector to the curve is

T a =
(
d

dt

)a

, Tµ = dxµ

dt
.

To compute the geodesic equation in coordinates, we evaluate T a∇aT
µ. Using the definition of the

covariant derivative of a vector field,

∇aT
µ = ∂aT

µ + Γµ
aλT

λ,

and contracting with T a gives

T a∇aT
µ = T a∂aT

µ + Γµ
aλT

aT λ.

In a coordinate basis, T a∂a = T ν∂ν , so the first term is

T ν∂νT
µ = d

dt

(
dxµ

dt

)
= d2xµ

dt2
.

Substituting back, the geodesic condition T a∇aT
b = 0 becomes

d2xµ

dt2
+ Γµ

νλ
dxν

dt

dxλ

dt
= 0. (3.3.3)

Equation (3.3.3) is Wald’s coordinate form of the geodesic equation: a system of n coupled second–
order ordinary differential equations for the coordinate functions xµ(t).

Existence and uniqueness. Given an initial point p ∈M and an initial tangent vector T a ∈ TpM ,
the standard theorems for ODEs guarantee a unique solution to (3.3.3). Thus, specifying initial
position and initial velocity uniquely determines a geodesic.

Why this equation represents “straightest possible” motion.
In ordinary Euclidean space, a straight line satisfies d2xi

dt2 = 0. The extra term involving Γµ
νλ

in (3.3.3) is the correction needed because, on a curved manifold, the coordinate basis itself
changes from point to point. The Christoffel symbols encode this change.
Thus the geodesic equation says:

“The acceleration is exactly what is required to keep the direction constant relative to the moving basis.”

If the connection coefficients vanish at a point (as in Riemannian normal coordinates), then at
that point the geodesic equation reduces to d2xµ/dt2 = 0, mimicking a straight line in flat space.
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3.5.3 The Exponential Map

Geodesics are uniquely determined by an initial point and an initial tangent vector. The exponential
map packages this fact into a single, geometric operation that sends a tangent vector at a point into
the manifold itself by “following the geodesic it generates.” This construction becomes indispensable
later—for defining normal coordinates, understanding curvature, and formalizing local inertial
frames in general relativity.

Initial value formulation of geodesics. Fix a point p ∈M and let TpM be its tangent space.
Given any vector T a ∈ TpM , consider the geodesic equation

T a∇aT
b = 0,

with initial conditions
γT (0) = p, γ̇T (0) = T a.

By the existence and uniqueness theorem for ODEs, this determines a unique geodesic
γT : I →M,

defined on some open interval I containing 0. In other words, T a fixes both the initial direction and
the rate of change along the geodesic.

Smooth dependence on initial data. Because the geodesic equation is a smooth system of
ODEs, solutions vary smoothly with respect to their initial data. Thus, for nearby vectors T a and
T ′a, the geodesics γT and γT ′ differ smoothly.

Definition of the exponential map. We now follow Wald and define a map from the tangent
space into the manifold by evaluating each geodesic at unit affine parameter:

expp(T a) := γT (1). (3.3.6)
Thus: - start at p, - shoot out along the unique geodesic whose initial tangent is T a, - travel for one
unit of affine parameter, - arrive at the point expp(T a).

The choice of parameter value 1 is conventional: changing it simply rescales the tangent vectors by
a constant factor.

Local diffeomorphism. For sufficiently small T a, the map expp is smooth and satisfies
(d expp)0a = IdTpM .

This follows from expanding γT (t) for small t:
γT (t) = p+ tT a +O(t2).

Thus the derivative of expp at the origin sends small vectors T a to the corresponding initial
displacement in M .

By the inverse function theorem, expp is therefore a diffeomorphism from a neighborhood of
0a ∈ TpM onto a neighborhood of p in M .
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Geometric meaning. The exponential map provides the canonical way to move from p into
the manifold in the direction indicated by a tangent vector. It is intrinsic and coordinate-free. In
Euclidean space with the usual flat connection, expp(T i) is simply p+ T i. On a curved manifold,
expp accomplishes the analogous “straight motion” using geodesics instead of literal straight lines.

Why the exponential map matters.
The exponential map ties together:

• the linear structure of TpM ,
• the nonlinear geometry of the manifold M ,
• and the geodesics determined by the connection ∇.

It allows us to:
• build coordinate systems whose axes are geodesics (Riemannian normal coordinates),
• express curvature through how expp deviates from linearity,
• treat small neighborhoods of p as if they were tangent-space vectors “exponentiated” into
M ,

• formalize the notion of freely falling observers and local inertial frames in general relativity.
In short:

expp : TpM →M

is the bridge between the tangent space and the manifold’s intrinsic geometry.

3.5.4 Riemannian Normal Coordinates

Riemannian normal coordinates (RNC) provide a coordinate system centered at a point p ∈M in
which the geometry looks as flat as possible at that point:

gµν(p) = ηµν , Γρ
µν(p) = 0.

These coordinates arise directly from the exponential map.

Step 1: Use the exponential map to label nearby points. For each vector T a ∈ TpM , the
exponential map sends T a to the endpoint of the geodesic shot out from p with initial tangent T a:

q = expp(T a).

When T a is sufficiently small, this establishes a one-to-one correspondence between points q near p
and tangent vectors T a near the origin.

Step 2: Use components of T a as coordinates. Choose a basis ea
(µ) of TpM . Every tangent

vector can be uniquely expanded as
T a = Tµea

(µ).

Definition: The Riemannian normal coordinates of q are defined by

xµ(q) := Tµ where q = expp(T a).

Thus each coordinate line xµ corresponds to a geodesic starting from p in the direction of ea
(µ).



3.5 Geodesics 69

Geometric meaning of coordinate axes. In RNC: - The coordinate lines through p are
geodesics. - The coordinate basis vectors at p equal the original basis ea

(µ). - Motion in a single
coordinate direction corresponds to following a uniquely determined geodesic.

Consequences for the metric and the connection. Because coordinate axes are geodesics,

Γµ
νλ(p) = 0.

To see this, consider the geodesic equation for a coordinate line parametrized by t = xµ:

d2xµ

dt2
+ Γµ

νλ
dxν

dt

dxλ

dt
= 0.

Along such a curve,
dxν

dt
= δν

µ,
d2xµ

dt2
= 0.

Hence the geodesic equation demands
Γµ

µµ(p) = 0,

and repeating this argument in different coordinate directions shows

Γρ
µν(p) = 0 for all µ, ν, ρ.

Next, at p, the metric can be arranged to equal the Minkowski/Euler metric ηµν by choosing the
basis {ea

(µ)} orthonormally:
gµν(p) = gabe

a
(µ)e

b
(ν) = ηµν .

Differentiating the identity gµν = ηµν at p and using Γρ
µν(p)= 0, we also get

∂λgµν(p) = 0.

Thus, RNC flatten the geometry at p to first order. Curvature appears only in the second derivatives
of the metric.

Higher–order behavior and curvature. Wald briefly states, and one can show, that:

∂σ∂ρgµν(p) = −1
3
(
Rµρνσ +Rµσνρ

)
(p).

These second-derivative terms are the leading indicators of curvature in RNC and are responsible
for tidal effects, geodesic deviation, and the non-Euclidean behavior of volumes and areas.

Why RNC are important.
Riemannian normal coordinates do not merely “look like” flat coordinates — they reproduce
the geometry of flat space at a point p in the strongest possible sense:

gµν(p) = ηµν , ∂λgµν(p) = 0, Γρ
µν(p) = 0.

Thus RNC give:
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• a coordinate system in which gravity “vanishes” at a point, matching the physical intuition
of a freely falling observer,

• the cleanest environment for expanding tensors in Taylor series,
• the natural coordinate system for analyzing curvature,
• the starting point for normal coordinate expansions used throughout general relativity,

gauge theory, and Riemannian geometry.
They are the mathematical realization of the equivalence principle: locally, spacetime is flat.

3.5.5 Gaussian Normal Coordinates

Gaussian normal coordinates (GNC) generalize the idea of Riemannian normal coordinates from
a single point to an entire hypersurface. Instead of shooting geodesics out of one point, we shoot
geodesics orthogonally out of every point on a chosen hypersurface S.

Step 1: Start with a hypersurface and its normal. Let S ⊂M be a smooth hypersurface of
codimension one. At each point p ∈ S, choose a unit normal vector na(p) satisfying

gabn
anb = ϵ, ϵ =

{
+1 (Riemannian or spacelike normal),
−1 (timelike normal in Lorentzian signature).

Step 2: Shoot out orthogonal geodesics. For each p ∈ S, consider the unique geodesic γp(t)
such that

γp(0) = p, γ̇p(0) = na(p),

where t is an affine parameter along γp. These geodesics are initially orthogonal to S.

Let us define the coordinate
x0 := t

to be the affine parameter along these geodesics. Thus, moving in the x0 direction corresponds to
moving along a normal geodesic, away from or toward S.

Step 3: Extend coordinates from S along the geodesics. Choose coordinates (x1, . . . , xn−1)
on the hypersurface S. To define coordinates off of S, we transport these labels along the orthogonal
geodesics by holding them fixed:

dxi

dt
= 0 along each normal geodesic.

In other words, each geodesic γp carries the coordinates of its starting point p ∈ S along with it.

Altogether, this defines a coordinate system

(x0, x1, . . . , xn−1)

in some neighborhood of S.
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Metric form in Gaussian normal coordinates. Let us denote the coordinate basis vectors by(
∂

∂x0

)a

,

(
∂

∂xi

)a

.

By construction,

• ∂/∂x0 is tangent to the normal geodesics,
• ∂/∂xi are tangent to the hypersurfaces x0 = constant,
• at x0 = 0 (on S), the normal vector is na = (∂/∂x0)a.

Since the normal geodesics are everywhere orthogonal to the surfaces x0 = constant, we have

g0i = gab

(
∂

∂x0

)a ( ∂

∂xi

)b

= 0.

Moreover, along each normal geodesic, the normalization of na is preserved:

g00 = gab

(
∂

∂x0

)a ( ∂

∂x0

)b

= gabn
anb = ϵ = ±1.

Thus, in Gaussian normal coordinates the metric takes the block form

g00 = ±1, g0i = 0,

and the remaining components gij(x0, xk) encode the intrinsic geometry of the hypersurfaces
x0 = constant and their extrinsic curvature in the ambient spacetime.

Preservation of orthogonality (idea). One can check (as Wald does) that if a vector field Xa

is initially tangent to S (so naX
a = 0 at x0 = 0), then naX

a = 0 remains true along the normal
geodesics. Equivalently, the coordinate basis vectors ∂/∂xi stay orthogonal to na for all x0. This is
the geometric reason the cross terms g0i vanish everywhere.

Why Gaussian normal coordinates are useful.
Gaussian normal coordinates are adapted to a hypersurface S and its orthogonal geodesics.
They are fundamental for:

• splitting spacetime into “time + space” (e.g. in ADM formalism),
• analyzing the geometry of hypersurfaces (extrinsic curvature),
• setting up initial value problems in general relativity,
• studying gravitational collapse, cosmology, and singularity theorems.

In these coordinates, x0 measures proper distance or proper time along the normals, while
(x1, . . . , xn−1) label the “points on S” that normal geodesics emanate from. The absence of mixed
terms g0i reflects the fact that the coordinate grid is built from surfaces that are everywhere
orthogonal to the normal geodesics.

3.5.6 Extremizing the Length Functional

Geodesics may also be characterized as curves that extremize the length functional. Wald states the
resulting Euler–Lagrange equations, but omits the intermediate steps; we supply them here.
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Figure 3.2: Construction of Gaussian normal coordinates from a hypersurface S: geodesics are
emitted orthogonally from S with initial tangent na, and the hypersurface coordinates xi are held
fixed along each geodesic.

The length functional. For a smooth curve xµ(t), define

L[xµ] =
∫ √

gµν(x) ẋµẋν dt. (3.3.11)

The Lagrangian is
L(x, ẋ) =

√
gµν(x) ẋµẋν .

Euler–Lagrange equation. Extremizing L gives
d

dt

(
∂L
∂ẋµ

)
− ∂L
∂xµ

= 0, (3.3.12)

which is Wald’s equation (3.3.12).

Computing the derivatives (expanded calculation). We find
∂L
∂ẋµ

= gµν ẋ
ν

L
,

∂L
∂xµ

= 1
2L ∂µgρσ ẋ

ρẋσ.

Take the total derivative:
d

dt

(
gµν ẋ

ν

L

)
= 1
L

(
gµν ẍ

ν + ∂λgµν ẋ
λẋν

)
− L̇
L2 gµν ẋ

ν .

Substituting into (3.3.12) and rearranging yields the expanded, non-affinely parameterized Euler–
Lagrange equation:

ẍµ + Γµ
νλẋ

ν ẋλ = L̇
L
ẋµ. (3.3.13∗)
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Interpretation. The right-hand side is tangent to the curve. It reflects the freedom to
reparameterize the curve: if we change t 7→ f(t), the left-hand side does not stay invariant, but
the added term is always proportional to ẋµ.

Affine parametrization. A parameter t is affine if L̇ = 0, i.e. L is constant. Under this choice,
the tangent term vanishes and we obtain Wald’s equation (3.3.13):

ẍµ + Γµ
νλẋ

ν ẋλ = 0, (3.3.13)

which is Wald’s geodesic equation in coordinate form.

Summary. Equation (3.3.13∗) is the fully general Euler–Lagrange form. Wald’s (3.3.13) is the
special case obtained when the parameter is affine.

3.5.7 Geodesic Deviation

The geodesic deviation equation describes how nearby geodesics accelerate toward or away from
each other. This is the mathematical expression of tidal forces, and it is the first place where the
curvature tensor appears in a dynamical way.

Consider a smooth one–parameter family of geodesics γs(t), where t is an affine parameter and s
labels the different geodesics in the family. Thus each fixed s gives a geodesic t 7→ γs(t), and varying
s slides us from one geodesic to a nearby one.

Define vector fields
T a :=

(
∂

∂t

)a

, Xa :=
(
∂

∂s

)a

.

Here,

• T a is tangent to the geodesics (t–curves),
• Xa points from one geodesic to a nearby geodesic (the deviation vector).

Because T a and Xa are coordinate vector fields on the (t, s) surface, they commute:

T b∇bX
a = Xb∇bT

a. (3.3.16)

Geometric Meaning of Commutativity. Both T a and Xa arise from the (t, s) coordinate
chart on the 2–dimensional surface swept out by the family of geodesics. Coordinate vector
fields always commute: their Lie bracket vanishes. This expresses the fact that “moving forward
in t and then in s” always leads to the same point as “moving in s and then in t”.

Because each curve of fixed s is a geodesic,

T b∇bT
a = 0. (3.3.1 revisited)
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Relative velocity. The rate at which the separation vector Xa changes along the geodesics is the
relative velocity:

va := T b∇bX
a. (3.3.17)

Relative acceleration. Differentiating again along T a gives the relative acceleration:

aa := T c∇cv
a = T c∇c(T b∇bX

a).

We now compute aa and relate it to curvature.

Using the commutation relation (3.3.16) and the geodesic equation T b∇bT
a = 0, Wald obtains

aa = T c∇c(T b∇bX
a)

= T c∇c(Xb∇bT
a)

= (T c∇cX
b)(∇bT

a) +Xb T c∇c∇bT
a

= Xb T c∇c∇bT
a

= −Ra
bcdX

bT cT d.

(3.3.18)

Key Step. The Riemann tensor appears through the identity

(∇c∇b −∇b∇c)T a = Ra
dcbT

d,

which is exactly the commutator formula for covariant derivatives acting on a vector. This is the
mathematical core of geodesic deviation: the failure of second covariant derivatives to commute
encodes curvature.

Thus we obtain the **geodesic deviation equation** (or Jacobi equation):

T b∇b (T c∇cX
a) = −Ra

bcd T
bT dXc. (3.3.18)

This equation states that the relative acceleration of nearby geodesics is determined by the curvature
components in the plane spanned by T a and Xa. In particular, positive curvature tends to make
geodesics focus (accelerate toward each other), while negative curvature tends to make them spread
apart.

Physical Meaning. In general relativity, the geodesic deviation equation expresses tidal gravity.
Two freely falling particles with initial separation Xa do not maintain constant separation:
spacetime curvature causes their worldlines to accelerate relative to each other. The curvature
tensor Ra

bcd encodes the tidal forces produced by matter via the Einstein equation.
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Figure 3.3: A one-parameter family of geodesics γs(t) with tangent T a and deviation vector Xa.

3.6 Methods for Computing Curvature

In Section 3.3, we defined the Riemann curvature tensor by proving the existence of a tensor field
Rabc

d satisfying the commutator formula

(∇a∇b −∇b∇a)ωc = Rabc
d ωd

for all smooth covector fields ωa. This existence theorem is conceptually important: it tells us that
curvature is the obstruction to commuting covariant derivatives. However, it does not tell us how to
actually compute the components of Rabc

d given a metric gab.

In general relativity, being able to compute curvature is essential: the Einstein field equation,

Gab = 8πTab,

involves the Ricci tensor Rab, which is a contraction of the Riemann tensor. Thus, given a metric,
one must be able to compute its associated curvature.

The purpose of this section is to develop practical methods for calculating curvature. Wald presents
two principal approaches:

1. Coordinate Component Method (compute Christoffel symbols Γa
bc from the metric, then

apply the coordinate formula for Rabc
d), and



76 3 Curvature

2. Orthonormal Basis (Tetrad) Method (introduce a non-coordinate orthonormal basis;
compute curvature using connection 1-forms and the Ricci rotation coefficients).

Both methods have advantages and disadvantages. The coordinate approach is straightforward but
algebraically tedious. The tetrad approach often simplifies computations, especially when the metric
has symmetries, but it requires additional geometric structure and care with the commutation
relations of the basis vectors.

Two Ways to Compute Curvature.
• In a coordinate basis, the Christoffel symbols Γa

bc are complicated but the basis vectors
commute.

• In an orthonormal basis, the connection coefficients (Ricci rotation coefficients) are simpler,
but the basis vectors need not commute.

Both approaches ultimately compute the same geometric object, the Riemann tensor, but with
quite different algebraic machinery.

We now develop each method carefully, filling in the steps omitted in Wald and providing geometric
interpretation where helpful.

3.6.1 Coordinate Component Method

The most direct way to compute curvature is to work in an arbitrary coordinate system and
express the covariant derivative in terms of the partial derivatives ∂a and the Christoffel symbols
Γc

ab. This method is conceptually straightforward—everything is written in coordinates—but often
computationally heavy.

Let ωa be a covector field. From the coordinate expression for the covariant derivative of a covector,

∇bωc = ∂bωc − Γd
bc ωd, (3.4.1)

we may compute its second covariant derivative (see Eq. 3.1.14):

∇a∇bωc = ∂a(∇bωc)− Γe
ab∇eωc − Γe

ac∇bωe. (3.4.2)

More detail shown in subsection 3.6.1.

Substituting Eq. 3.4.1 into Eq. 3.4.2 and expanding, one obtains a long but entirely mechanical
expression. Wald does not write out every term explicitly, but the structure is clear: each ∇
introduces both a partial derivative and a Christoffel symbol.

Now insert this into the defining relation for the curvature tensor,

(∇a∇b −∇b∇a)ωc = Rabc
d ωd. (3.2.3 revisited)

After canceling terms that appear with opposite signs, and using the commutativity of the coordinate
derivatives ∂a∂b = ∂b∂a, the remaining expression is

Rabc
d ωd =

[
−2 ∂[aΓd

b]c + 2 Γe
c[a Γd

b]e
]
ωd. (3.4.3)
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Since this holds for all ωd, we may drop ωd and obtain the familiar coordinate formula for the
Riemann tensor:

Rµνρ
σ = ∂νΓσ

µρ − ∂µΓσ
νρ + Γσ

µλΓλ
νρ − Γσ

νλΓλ
µρ. (3.4.4)

How to compute curvature in practice. Given a metric gµν :

1. Compute the inverse metric gµν .
2. Compute the Christoffel symbols using

Γρ
µν = 1

2g
ρσ(∂µgσν + ∂νgσµ − ∂σgµν). (3.1.30 revisited)

3. Compute the Riemann tensor using Eq. 3.4.4.
4. Contract indices to obtain the Ricci tensor:

Rµρ = Rµνρ
ν . (3.4.5)

Geometric Meaning. The coordinate method is brute-force: it expands the commutator of
covariant derivatives directly. All curvature information is encoded in how Christoffel symbols
vary from point to point. If the Γρ

µν are constant in a coordinate chart, then all partial
derivatives vanish and the curvature reduces to products of Christoffels. If the Christoffels
vanish (as in Riemann normal coordinates at p), the curvature is determined entirely by their
first derivatives.

Index-Free to Index-Full: Second Covariant Derivative

We want to understand clearly how
∇a∇bωc = ∂a(∇bωc)− Γe

ab∇eωc − Γe
ac∇bωe (3.4.2)

arises from the general rules for covariant differentiation.

Step 0: Type of the objects.
• ωa is a covector field: a (0, 1) tensor.
• ∇bωc is a (0, 2) tensor (one derivative index b and one covector index c).

The key rule is:

Covariant derivative rule (type (0, 2)).
If Tbc is a (0, 2) tensor, then

∇aTbc = ∂aTbc − Γe
abTec − Γe

acTbe.

Every lower index contributes a minus Christoffel term with that index replaced by a dummy
index e.

Step 1: First covariant derivative (type (0, 1)). Start with the covector field ωc. By
definition of the covariant derivative of a covector (Wald eq. (3.1.12)):

∇bωc = ∂bωc − Γd
bc ωd. (3.4.1)

This object ∇bωc has two lower indices (b, c), so it is a (0, 2) tensor.
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Step 2: Recognize ∇bωc as a (0, 2) tensor. Define

Tbc := ∇bωc.

Then Tbc is a general (0, 2) tensor, so we must use the (0, 2) covariant-derivative rule when
differentiating it.

Step 3: Apply the (0, 2) rule. Using the general formula for ∇aTbc:

∇aTbc = ∂aTbc − Γe
abTec − Γe

acTbe,

we substitute Tbc = ∇bωc:

∇a(∇bωc) = ∂a(∇bωc)− Γe
ab(∇eωc)− Γe

ac(∇bωe).

This is precisely
∇a∇bωc = ∂a(∇bωc)− Γe

ab∇eωc − Γe
ac∇bωe,

which is Wald’s equation (3.4.2).

Step 4: The “one Γ per index” rule. Conceptually, the pattern is:
• For a (0, 1) tensor Sc, we have

∇aSc = ∂aSc − Γe
acSe ⇒ one lower index ⇒ one Γ term.

• For a (0, 2) tensor Tbc, we have

∇aTbc = ∂aTbc − Γe
abTec − Γe

acTbe ⇒ two lower indices ⇒ two Γ terms.

In our case, ∇bωc has two lower indices (b, c), so the second covariant derivative ∇a(∇bωc) must
contain two Christoffel correction terms: one for the b index and one for the c index.

Takeaway. Rather than tracking every symbol individually, remember: “Covariant deriva-
tive = partial derivative + one correction term for each index.” Once you recognize the type
of ∇bωc as (0, 2), it is automatic that ∇a(∇bωc) will produce exactly two Christoffel terms,
one correcting each of the two lower indices.

Determinant identities. Wald takes this opportunity to record useful formulas involving the
determinant of the metric,

g = det(gµν), (3.4.6)

since such expressions frequently arise when computing divergences and contracted Christoffel
symbols.

From the definition of Γµ
µν , one shows

Γµ
µν = 1

2g ∂νg = ∂ν ln
√
|g|. (3.4.9)
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This identity is extremely useful when simplifying divergences of vector fields:

∇aT
a = 1√

|g|
∂µ

(√
|g|Tµ

)
. (3.4.10)

Why the Coordinate Method Can Be Hard. Although conceptually straightforward, the
coordinate component method is notorious for producing long chains of partial derivatives and
index contractions. Even in simple metrics (e.g. Schwarzschild, FLRW), dozens of terms may
appear before simplifications occur. Errors in signs or indices are common without symbolic
software.

3.6.2 Orthonormal Basis (Tetrad) Methods

Coordinate methods work directly with the components gµν and Γρ
µν in some chart. Often, however,

it is more convenient to work in an orthonormal basis of vector fields, especially when the metric
has a simple local form (e.g. Minkowski metric) but the coordinate components gµν are messy. This
is the idea behind tetrad (or orthonormal frame) methods.

Idea. Instead of expanding all tensors in a coordinate basis {∂µ}, we choose a moving orthonor-
mal frame {(eµ)a} so that in this basis the metric is locally ηµν = diag(−1, . . . , 1). All geometric
information then sits in how the frame rotates from point to point, encoded in the connection
1-forms (Ricci rotation coefficients).

Orthonormal Frames and Tetrads

A tetrad (in n dimensions, more generally an orthonormal frame) is a collection of smooth vector
fields

{(eµ)a}, µ = 0, 1, . . . , n− 1,
such that at every point

(eµ)a(eν)a = ηµν , (3.4.11)
where (eν)a := gab(eν)b and ηµν = diag(−1, . . . , 1) is the flat Minkowski (or Euclidean) metric in
this frame.

Equation (3.4.11) says that the tetrad vectors form an orthonormal basis at each point, with respect
to gab. From (3.4.11) it follows that ∑

µ,ν

ηµν(eµ)a(eν)b = δa
b, (3.4.12)

where ηµν is the inverse matrix to ηµν . Thus {(eµ)a} is a basis and (eµ)a the dual coframe.

Any tensor may be expanded in this orthonormal basis. For example, a vector V a has frame
components

V µ := (eµ)aV
a, V a = V µ(eµ)a,

where (eµ)a is the dual coframe satisfying (eµ)a(eν)a = δµ
ν .
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Connection 1-Forms and Ricci Rotation Coefficients

In a coordinate basis the connection is encoded by the Christoffel symbols Γc
ab. In an orthonormal

basis, it is more natural to encode the connection through the connection 1-forms
ωaµν := (eµ)b∇a(eν)b. (3.4.13)

The components of these 1-forms in the tetrad basis,
ωλµν := (eλ)aωaµν = (eλ)a(eµ)b∇a(eν)b, (3.4.14)

are called the Ricci rotation coefficients.

Metric compatibility. Using orthonormality (3.4.11) and ∇agbc = 0 we get
0 = ∇a

[
(eµ)b(eν)b

]
= ωaµν + ωaνµ.

Thus the connection 1-forms are antisymmetric in µν:
ωaµν = −ωaνµ, (3.4.15)

and similarly for the Ricci rotation coefficients,
ωλµν = −ωλνµ. (3.4.16)

Geometric Picture. The connection 1-forms tell you how the orthonormal frame “rotates”
as you move around the manifold. At each point, the frame looks like a local Minkowski (or
Euclidean) basis. Curvature then appears as the failure of these local frames to fit together
consistently across finite regions.

Curvature in an Orthonormal Basis

We can express the components of the Riemann tensor in the tetrad basis as
Rρσµν := Rabcd(eρ)a(eσ)b(eµ)c(eν)d. (3.4.17)

Using the definition of curvature as the commutator of covariant derivatives and the connection
1-forms (3.4.13), Wald shows that

Rρσµν = (eρ)a(eσ)b(∇aωbµν −∇bωaµν
)
−
∑
α,β

ηαβ(ωρµαωσνβ − ωρναωσµβ

)
. (3.4.20)

Equivalently, in a slightly more compact index arrangement,
Rρσµν = (eρ)a∇aωσµν − (eσ)a∇aωρµν −

∑
α,β

ηαβ(ωρµαωσνβ − ωσµαωρνβ

)
. (3.4.21)

Ricci tensor in a tetrad. Once Rρσµν is known, the Ricci tensor components in the orthonormal
frame are simply the contraction

Rµν =
∑
ρ,σ

ηρσRρµσν . (3.4.22)
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Why the Tetrad Method is Useful. In n dimensions there are n2(n + 1)/2 independent
Christoffel symbols Γρ

µν , but only n(n− 1)(n)/2 independent Ricci rotation coefficients ωλµν ,
thanks to the antisymmetry in µν. For example, in 4 dimensions there are 40 independent
Γρ

µν but only 24 independent ωλµν . Moreover, ηµν is constant in the orthonormal frame, so the
metric itself does not clutter the calculations.

Torsion-Free Condition in a Tetrad

To fully determine the connection 1-forms, we must encode the fact that our derivative operator is
torsion-free. Wald gives two equivalent forms of this condition.

(i) Commutation relations of basis vectors. From the general torsion-free condition

∇aXb −∇bXa = [X,Y ]a

(see equation (3.1.2)), applied to the tetrad vectors (eµ)a, one obtains

(eσ)a[eµ, eν ]a = ωµνσ − ωνµσ. (3.4.23)

Thus the antisymmetric part of the Ricci rotation coefficients is fixed by the commutators of the
tetrad basis vectors.

(ii) Antisymmetrized derivative of the coframe. From the definition of ωaµν one also finds

∇[a(eσ)b] =
∑
µ,ν

ηµν(eµ)[a ωb]σν . (3.4.24)

But torsion-freedom implies that the antisymmetrized derivative ∇[a(eσ)b] is independent of the
connection; we may therefore replace ∇ by ∂:

∂[a(eσ)b] =
∑
µ,ν

ηµν(eµ)[a ωb]σν . (3.4.25)

Conversely, if (3.4.25) holds for all basis vectors, the connection is torsion-free.

Practical Strategy. In tetrad calculations one typically:
1. Chooses an orthonormal coframe (eµ)a adapted to the symmetries of the problem.
2. Uses (3.4.25) (or the commutators (3.4.23)) to solve for the ωλµν .
3. Substitutes these into (3.4.21) to obtain Rρσµν and hence the Ricci tensor via (3.4.22).

Often the coframe can be chosen so cleverly that step (2) can almost be done by inspection.

Differential-Forms Formulation

Finally, Wald recasts the tetrad method in the language of differential forms, which is especially
compact.
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Let {eµ} denote the coframe 1-forms

eµ := (eµ)a dx
a,

and let ωµ
ν be the connection 1-forms,

ωµ
ν := ωaµ

ν dxa, ωµν = ηνσ ωµ
σ,

so that ωµν = −ωνµ.

Then the torsion-free condition (3.4.25) can be written compactly as

deσ =
∑

µ

eµ ∧ ωµ
σ. (3.4.27)

The curvature 2-forms
Rµ

ν := 1
2Rµ

ν
ρσ eρ ∧ eσ

are obtained from the connection 1-forms by

Rµ
ν = dωµ

ν +
∑

α

ωµ
α ∧ ωα

ν . (3.4.28)

Equations (3.4.27) and (3.4.28) are sometimes called the Cartan structure equations.

Summary of Methods. We now have two main computational strategies:
• Coordinate basis: start from gµν , compute Γρ

µν and then Rµνρ
σ via Eq 3.4.4.

• Orthonormal (tetrad) basis: choose an orthonormal coframe, solve for the connection
1-forms from torsion-free conditions Eq. 3.4.23 or Eq. 3.4.25, then obtain curvature from
the Cartan equations Eq. 3.4.27–Eq. 3.4.28.

In highly symmetric spacetimes, a clever tetrad choice often makes the second method far more
efficient than brute-force coordinate computation.

Problems

1. Let property (5) (the “torsion free” condition) be dropped from the definition of derivative
operator ∇a in section 3.1.
(a) Show that there exists a tensor T c

ab (called the torsion tensor) such that for all smooth
functions f , we have

∇a∇bf −∇b∇af = −T c
ab∇cf.

(Hint: repeat the derivation of eq. (3.1.8), letting ∇a be a torsion-free derivative operator.)
(b) Show that for any smooth vector fields Xa, Y a we have

T c
abX

aY b = Xa∇aY
c − Y a∇aX

c − [X,Y ]c.

(c) Given a metric gab, show that there exists a unique derivative operator ∇a with torsion
T c

ab such that ∇cgab = 0. Derive the analog of equation (3.1.29), expressing this
derivative operator in terms of an ordinary derivative ∂a and T c

ab.
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2. Let M be a manifold with metric gab and associated derivative operator ∇a. A solution
of the equation ∇a∇aα = 0 is called a harmonic function. In the case where M is a two-
dimensional manifold, let α be harmonic and let ϵab be an antisymmetric tensor field satisfying
ϵabϵ

ab = 2(−1)s, where s is the number of minuses occurring in the signature of the metric.
Consider the equation

∇aβ = ϵab∇bα.

(a) Show that the integrability conditions (see problem 5 of chapter 2 or appendix B) for
this equation are satisfied, and thus, locally, there exists a solution β. Show that β is
also harmonic, ∇a∇aβ = 0. (β is called the harmonic function conjugate to α.)

(b) By choosing α and β as coordinates, show that the metric takes the form

ds2 = ±Ω2(α, β)
[
dα2 + (−1)sdβ2].

3. (a) Show that Rabcd = Rcdab.
(b) In n dimensions, the Riemann tensor has n4 components. However, on account of the

symmetries (3.2.13), (3.2.14), and (3.2.15), not all of these components are independent.
Show that the number of independent components is n2(n2 − 1)/12.

4. (a) Show that in two dimensions, the Riemann tensor takes the form

Rabcd = Rga[cgd]b.

(Hint: use the result of problem 3(b) to show that ga[cgd]b spans the vector space of
tensors having the symmetries of the Riemann tensor.)

(b) By similar arguments, show that in three dimensions the Weyl tensor vanishes identically;
i.e., for n = 3, equation (3.2.28) holds with Cabcd = 0.

5. (a) Show that any curve whose tangent satisfies equation (3.3.2) can be reparameterized so
that equation (3.3.1) is satisfied.

(b) Let t be an affine parameter of a geodesic γ. Show that all other affine parameters of γ
take the form at+ b, where a and b are constants.

6. The metric of Euclidean R3 in spherical coordinates is

ds2 = dr2 + r2(dθ2 + sin2 θ dϕ2)

(see problem 8 of chapter 2).
(a) Calculate the Christoffel components Γσ

µν in this coordinate system.
(b) Write down the components of the geodesic equation in this coordinate system and verify

that the solutions correspond to straight lines in Cartesian coordinates.
7. As shown in problem 2, an arbitrary Lorentz metric on a two-dimensional manifold locally

always can be put in the form

ds2 = Ω2(x, t) [−dt2 + dx2].

Calculate the Riemann curvature tensor of this metric (a) by the coordinate basis methods of
section 3.4a, and (b) by the tetrad methods of section 3.4b.

8. Using the antisymmetry of ωλµν in µ and ν, equation (3.4.15), show that

ωλµν = 3ω[λµν] − 2ω[νµ]λ.

Use this formula together with equation (3.4.23) to solve for ωλµν in terms of commutators
(or antisymmetrized derivatives) of the orthonormal basis vectors.
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Chapter 4

Einstein’s Equations

In this chapter we develop a mathematically precise formulation of the ideas behind general relativity.
We begin by reviewing the geometry of space in prereleativity physics, then discuss special relativity,
and finally introduce spacetime and Einstein’s equation. Throughout, we emphasize the tensorial
formulation of physical laws and the principles of general and special covariance.

4.1 The Geometry of Space in Prerelativity Physics: General and
Special Covariance

Before relativity, physics assumed that physical space is the manifold R3. One further assumes that
points in space may be labeled by Cartesian coordinates (x1, x2, x3), obtained by constructing a “rigid
rectilinear grid” of meter sticks. Although many Cartesian coordinate systems are possible—related
by rotations and translations—the distance between points is coordinate-invariant.

If two points have coordinate values xµ and x̄µ, the Euclidean distance D between them is

D2 = (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2. (4.1.1)

For “nearby” points, this becomes

(δD)2 = (δx1)2 + (δx2)2 + (δx3)2. (4.1.2)

suggesting that the metric of space is

ds2 = (dx1)2 + (dx2)2 + (dx3)2, (4.1.3)

or, in index notation,

hab =
∑
µ,ν

hµν(dxµ)a(dxν)b, hµν = diag(1, 1, 1). (4.1.4)
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To get ds2 from the Eq. 4.1.4, for a small displacement from a point xµ → xµ + dxµ, think of a
tangent vector va whose components in these coordinates are vµ = dxµ,

ds2 = habv
avb = hµν(dxµ)a(dxν)bv

avb

= habv
avb = hµν(dxµ)av

a(dxν)bv
b

= hµνv
µvµ = hµνdx

µdxν

Since the components hµν are constant in Cartesian coordinates, we have

∂αhµν = 0. (4.1.5)

Thus the Christoffel symbols in this coordinate system vanish:

Γµ
νλ = 1

2h
µν(∂νhσλ + ∂λhσν − ∂σhνλ) = 1

2h
µν(0 + 0 + 0) = 0

Γµ
νλ = 0.

The associated derivative operator is simply the ordinary partial derivative, covariant derivatives
commute, and the curvature tensor is identically zero. Hence hab is a flat Riemannian metric.

Geometric Meaning. A vanishing Riemann tensor implies that the manifold is flat. Geodesics
become exactly straight lines in Cartesian coordinates. Thus the geometric structure described
by hab reproduces standard Euclidean space.

Because geodesics remain straight lines and initially parallel geodesics remain parallel, one may
construct rigid grids of meter sticks across space. Consequently, the fundamental assumption of
prereleativity physics is equivalent to the statement:

Space is the manifold R3 equipped with a flat Riemannian metric.

Tensorial Nature of Physical Quantities

Although every physical measurement yields a number, many physical quantities (e.g. electromagnetic
fields, stress tensors) cannot be expressed meaningfully as numbers without choosing basis vectors.
These quantities are naturally represented as tensor fields.

Why tensors? Any analytic map from vectors and dual vectors to numbers can be expanded
as a sum of multilinear maps. Thus the class of tensor fields is sufficiently broad to describe
every measurable physical quantity in prereleativity, special relativity, and general relativity.

Therefore the laws of physics must be expressible as tensor equations—equalities between tensor
fields that hold independently of coordinates.
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General Covariance

The central principle is:

The laws of physics must refer only to geometric structures intrinsic to space.

In prereleativity physics this means:

• the only geometric structure associated with space is the metric hab,
• there are no preferred vector fields,
• the laws of physics must hold in all coordinate systems.

Coordinate expressions that fail to include the geometric structure (e.g. writing equations using
only partial derivatives rather than covariant derivatives) may appear non-tensorial, but this reflects
an incomplete formulation rather than a violation of covariance.

A key implication is that a Christoffel symbol Γc
ab may never appear by itself (i.e. outside of a

covariant derivative) in any physical law, since it is not a tensor.

Special Covariance

The metric hab in Eq. 4.1.4 has a six-parameter isometry group (rotations and translations). The
principle of special covariance states:

If two observers are related by an isometry of space, they must agree on all physical
measurements.

Thus special covariance expresses invariance under the subgroup of coordinate transformations cor-
responding to isometries, whereas general covariance concerns invariance under arbitrary coordinate
transformations.

Special covariance will play a central role in the development of special relativity and in motivating
the dynamical laws for fields.

Note: This is not referring to two observers in relative motion (more on that later). It refers
to observers measuring the same space with coordinates that are isometries of each other (think a
cartesian coordinate system rotated - the rotated version is an isometry of the non-rotated version).
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4.2 Special Relativity

4.2.1 Overview and Inertial Frames

Special relativity begins with the assumption that spacetime has the structure of R4. A global
coordinate system {xµ} = (t, x1, x2, x3) is introduced by a family of special observers—the inertial
observers—who set up synchronized clocks and a rigid rectilinear grid of meter sticks. Such a
coordinate system is called a global inertial coordinate system.

Different choices of global inertial coordinates are possible: any two such coordinate systems are
related by an element of the 10-parameter Poincaré group (rotations, translations, boosts, and a
discrete parity transformation). Thus, the numerical values of (t, x1, x2, x3) at an event have no
intrinsic meaning. Nevertheless, these observers agree on one structure: the spacetime interval
between two events.

Given two events x and x̄, the spacetime interval I is defined by

I = −(x0 − x̄0)2 + (x1 − x̄1)2 + (x2 − x̄2)2 + (x3 − x̄3)2, (4.2.1)

where we have chosen units in which c = 1. All global inertial observers compute the same value of
I; thus I is an intrinsic geometric property of spacetime.

The geometric meaning of the interval. Equation 4.2.1 generalizes the Euclidean distance
formula but with a crucial sign difference. The minus sign in front of the time component encodes
the causal structure of spacetime: timelike, null, and spacelike separations are distinguished by
the sign of I. This structure is preserved under Poincaré transformations.

The spacetime interval suggests introducing the metric of spacetime ηab. In the coordinate basis
associated with any global inertial coordinate system, we define

ηab =
3∑

µ,ν=0
ηµν (dxµ)a(dxν)b, (4.2.2)

with components
ηµν = diag(−1, 1, 1, 1).

The tensor field ηab so defined is independent of the particular choice of inertial coordinates.
Furthermore, because the components ηµν are constant, the ordinary derivative operator ∂a satisfies

∂aηbc = 0, (4.2.3)

and is therefore the derivative operator compatible with ηab.

Since ordinary derivatives commute, Eq. 4.2.3 implies that the curvature of ηab vanishes. Thus,
special relativity models spacetime as a flat Lorentzian manifold (R4, ηab).
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Flat Lorentzian geometry. The metric ηab defines all standard geometric notions of special
relativity: distances, angles between vectors, classification of curves as timelike, spacelike, or
null, and the causal light cone structure. All inertial observers agree on these geometric features.

Consequently, the central geometric assertion of special relativity can be summarized succinctly:

Spacetime is the manifold R4 equipped with a flat, Lorentz-signature metric ηab.

Conversely, beginning with this assumption alone, one can reconstruct the entire framework of
special relativity: the existence of global inertial coordinates, the form Eq. 4.2.1 of the interval, and
the interpretation of inertial motion as straight lines (i.e., geodesics) in Minkowski spacetime.

4.2.2 Geometry of Minkowski Spacetime

In special relativity, the flat Lorentzian metric ηab introduced in Eq. 4.2.2 governs all geometric
properties of spacetime. Since its components are constant in any global inertial coordinate system,
the curvature associated with ηab vanishes. Consequently, the geodesics of ηab—i.e. the curves
satisfying

T a∂aT
b = 0,

where T a is the tangent—are precisely the straight lines in global inertial coordinates.

Interpretation. A geodesic of ηab is the worldline of a freely falling particle in special relativity.
Thus, straight-line motion in (t, xi) coordinates corresponds to force-free motion, reflecting the
homogeneity of Minkowski spacetime.

Since ηab has signature (−,+,+,+), it allows us to classify tangent vectors and curves.

Timelike, null, and spacelike curves. Let T a be the tangent to a curve γ. We define:

ηabT
aT b < 0 timelike,

ηabT
aT b = 0 null,

ηabT
aT b > 0 spacelike.

Timelike curves represent possible worldlines of particles with nonzero rest mass. Null curves
represent the propagation of light (photons). Spacelike curves correspond to motions exceeding the
speed of light and have no physical realization.

Note: A metric product with two vectors like, ηabT
aT b, gives the inner product between the vectors

— the spacetime version of a dot product, but with signature (−,+,+,+). If this is less than 0, it
means the motion is mostly through time. If it is greater than 0, the motion is mostly through space.
If it is zero, it is right on the edge of the light cone.
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Light cones. At each event, the null vectors of ηab form a double cone: the future and past
light cones. This structure encodes causality. All observers agree on the light cone structure
because ηab is the same tensor field for all inertial frames.

Proper Time

Given a timelike worldline with tangent T a, we define the proper time τ by

τ =
∫ √
−ηabT aT b dt, (4.2.4)

where t is any parameter that increases toward the future. This quantity represents the time
measured by a physical clock carried along the curve.

Different parameterizations generally give different integrals in Eq. 4.2.4, but the resulting value
of τ is invariant: it depends only on the geometric curve itself. Thus, proper time is a geometric
length for timelike curves.

Proper Time in Special Relativity
Let t = x0 be the coordinate time of an inertial observer, and write

xa(t) = (t, x⃗(t)), T a = dxa

dt
= (1, v⃗).

Using the Minkowski metric ηab = diag(−1,+1,+1,+1), the squared norm of T a is

ηabT
aT b = −(T 0)2 + (T 1)2 + (T 2)2 + (T 3)2 = −1 + |v⃗|2.

Therefore the proper time along the worldline is

τ =
∫ √
−ηabT aT b dt =

∫ √
1− |v⃗|2 dt.

Differentiating gives the infinitesimal relation

dτ =
√

1− |v⃗|2 dt,

which is the standard special relativity time-dilation formula.

4-Velocity and Lorentz Factor in Special Relativity
Let t = x0 be the coordinate time of an inertial observer, and write

xa(t) = (t, x⃗(t)), T a = dxa

dt
= (1, v⃗),

where v⃗ = dx⃗/dt is the ordinary 3-velocity.
From the proper-time relation,

dτ = dt
√

1− |v⃗|2, dt

dτ
= 1√

1− |v⃗|2
≡ γ.
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Define the 4-velocity using proper time:

Ua = dxa

dτ
= dxa

dt

dt

dτ
= γ(1, v⃗).

Its Minkowski norm is
ηabU

aU b = γ2(−1 + |v⃗|2) = −1,

so Ua is automatically unit timelike.
Thus the standard special relativity result is

Ua = γ(1, v⃗), γ = 1√
1− |v⃗|2

.

Note 4.1. Proper time, τ , is local and physical. Measured by your clock. It uses the locally
flat metric.
Coordinate time, t, is global and mathematical. It is defined by someone else. It can be
influenced by curvature and coordinate choices.
t = τ happens only in flat spacetime (when v⃗ = 0) or in a shared inertial reference frame.

Four-Velocity

Using proper time τ as a parameter along a timelike curve, we define the four-velocity:

ua = dxa

dτ
.

By construction,
uaua = −1, (4.2.5)

reflecting the normalization of the tangent with respect to ηab.

A freely falling particle experiences no force; hence its worldline is a geodesic. Expressed in inertial
coordinates, this yields

ua ∂au
b = 0. (4.2.6)

Physical meaning. Equation 4.2.6 states that the components of ub are constant in global
inertial coordinates: free particles move with constant velocity unless acted upon by external
forces—the special relativistic form of Newton’s first law.

Energy and Momentum

All material particles possess a rest mass m. The four-momentum is defined by

pa = mua. (4.2.7)
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For an observer with four-velocity va, the energy of the particle measured by that observer is

E = −pav
a. (4.2.8)

If the observer is comoving with the particle (va = ua), then Eq. 4.2.8 reduces to

E = m,

the rest energy (in units with c = 1), i.e. the relativistic version of mc2.

Interpretation. Energy is the “time component” of four-momentum relative to the observer’s
frame. Because ηab is flat and parallel transport is path independent, the concept of energy is
globally well-defined for inertial observers.

Energy and Momentum in Special Relativity
For a particle of rest mass m, the four-momentum is

pa = mUa, Ua = γ(1, v⃗), γ = 1√
1− |v⃗|2

.

Thus
pa = mγ(1, v⃗) = (mγ, mγv⃗ ).

For an inertial observer at rest in these coordinates, the energy is the negative inner product
with the observer’s four-velocity va = (1, 0, 0, 0):

E = −pav
a = p0 = mγ.

The spatial components give the relativistic momentum,

p⃗ = mγ v⃗.

Therefore the standard special relativity relations are

E = mγ, p⃗ = mγv⃗, pa = (E, p⃗).

These satisfy the invariant mass-shell condition

E2 − |p⃗|2 = m2,

which follows from papa = −m2.

4.2.3 Stress–Energy and Matter in Special Relativity

In special relativity, the physical content of matter is encoded in a symmetric rank-2 tensor field Tab,
called the stress–energy–momentum tensor. This tensor incorporates the energy density, momentum
density, and internal stresses of continuous matter distributions. For any observer with four-velocity
va, the quantity

Tabv
avb ≥ 0 (4.2.9)
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represents the mass–energy density measured by that observer. For ordinary matter, this quantity
is nonnegative; this is the flat-spacetime version of the energy condition.

If xa is a vector orthogonal to va, then the component −Tabv
axb is interpreted as the momentum

density in the xa direction. Similarly, if ya is another vector orthogonal to va, the quantity Tabx
ayb

represents a spatial stress component.

Interpretation. The components of Tab with one index contracted into va give densities and
fluxes as measured in the observer’s rest frame. The fully spatial components encode internal
stresses (pressure, shear). Thus Tab organizes all mechanical properties of matter into one
covariant object.

Why the Stress–Energy Tensor Appears in Special Relativity
In special relativity, any matter distribution has three familiar quantities:

• energy density,
• momentum density,
• stresses (pressure and shear).

In different inertial frames these quantities mix under Lorentz transformations: energy can
appear as momentum, stresses can appear as energy flux, etc. The only mathematical object
that transforms correctly to keep track of all these densities and fluxes in every frame is a
symmetric rank-2 tensor, the stress–energy tensor Tab.
Contracting Tab with the observer’s four-velocity va projects out the physical quantities measured
in that observer’s rest frame: Tabv

avb gives energy density, −Tabv
axb gives momentum density,

and Tabx
ayb gives spatial stresses.

Perfect Fluids

A perfect fluid is an idealized form of matter with no viscosity, no heat conduction, and no anisotropic
stresses. In the instantaneous rest frame of a fluid element, the matter must therefore appear
isotropic:

• its energy density is a scalar ρ,
• its pressure P acts equally in all spatial directions.

Let ua be the fluid’s unit timelike four-velocity. In the rest frame of the fluid, ua = (1, 0, 0, 0), and
the symmetry assumptions imply that there is

• no momentum flow (T0i = 0),
• equal pressure in every spatial direction (Tij = Pδij).

Thus the stress–energy tensor in the fluid rest frame must be

(Tab)rest =
(
ρ 0
0 Pδij

)
,

a diagonal matrix with energy density in the time–time component and pressure in the spatial
components.
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To write this in a Lorentz-invariant form valid in any frame, we proceed systematically. The only
geometric ingredients available for constructing a symmetric rank-2 tensor are the metric ηab and
the fluid four-velocity ua. Isotropy forbids introducing any preferred spatial direction, so the most
general form compatible with symmetry is

Tab = Auaub +B ηab,

for some scalars A and B to be determined.

Evaluating this ansatz in the fluid rest frame:
T00 = A−B = ρ, Tij = B δij = P δij .

Hence B = P and A = ρ+ P , giving
Tab = (ρ+ P )uaub + P ηab.

It is traditional to introduce the spatial projector
hab = ηab + uaub,

which satisfies habu
b = 0 and reduces in the rest frame to hij = δij , h00 = h0i = 0. Using hab, the

perfect-fluid tensor takes the compact form
Tab = ρ uaub + P hab = ρ uaub + P (ηab + uaub). (4.2.10)

Meaning of the terms. The factor ρ uaub represents the rest-frame energy density carried
along the fluid worldlines. The term P (ηab +uaub) projects onto the spatial directions orthogonal
to ua and encodes isotropic pressure acting equally in all directions. The adjective “perfect”
indicates the absence of viscosity, heat flow, and anisotropic stresses.

Equations of Motion

In flat spacetime, the conservation of stress–energy takes its simplest form:
∂aTab = 0. (4.2.11)

This single tensor equation encodes both energy conservation and momentum conservation.

Writing Eq. 4.2.11 in terms of the variables ρ, P , and projecting parallel to ub,

0 = ∂aTab = ∂a[(ρ+ P )uaub + Pηab]
= ∂a[(ρ+ P )uaub] + ∂a[Pηab]
= ∂a(ρ+ P )uaub + (ρ+ P )∂auaub + ∂a(Pηab)
= ∂a(ρ+ P )uaub + (ρ+ P )∂auaub + ηab∂

aP

= ∂a(ρ+ P )uaub + (ρ+ P )∂auaub + ∂bP

= ∂a(ρ+ P )uaub + (ρ+ P )[(∂aua)ub + ua(∂aub)] + ∂bP

Now we contract with ub using ubu
b = −1, go term by term;
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• ub∂
a(ρ+ P )uaub = ∂a(ρ+ P )uau

bub = −∂a(ρ+ P )ua

• ub(ρ+ P )(∂aua)ub = (ρ+ P )(∂aua)ubub = −(ρ+ P )(∂aua)
• ub(p+ P )ua(∂aub) = (p+ P )ua(ub∂aub) = 0
• ub∂bP

Put it all together,

− ∂a(ρ+ P )ua − (ρ+ P )(∂aua) + ub∂bP

=− ∂a(ρ)ua − ∂a(P )ua − ρ(∂aua)− P (∂aua) + ub∂bP

=− ∂a(ρ)ua − ρ(∂aua)− P (∂aua)
=− [ua∂aρ+ (ρ+ P )∂aua] = 0

which is our first equation,

ua∂aρ+ (ρ+ P )∂aua = 0

Writing Eq. 4.2.11 in terms of the variables ρ, P , ua,and ub, and projecting orthogonal to ub, and
using using the spatial projector,

hc
b = δc

b + ucub (equivalently hab = ηab + uaub),

and that hc
bu

b = 0,

0 = hc
b[∂a(ρ+ P )uaub + (ρ+ P )[(∂aua)ub + ua(∂aub)] + ∂bP ]

= hc
b[∂a(ρ+ P )uaub + (ρ+ P )(∂aua)ub) + (ρ+ P )ua(∂aub) + ∂bP ]

= (ρ+ P )hc
bua(∂aub) + hc

b∂bP

Since hc
b is just a projector, and ua∂

aub is already orthogonal to ub, hc
bua∂

aub = ua∂
auc and,

0 = (ρ+ P )ua∂
auc + hcb∂bP

Lower the free index c→ b will

0 = (ρ+ P )ua∂aub + hab∂
aP

Replacing hab = ηab + uaub in that last equation, Wald obtains the two equations:

ua∂aρ+ (ρ+ P ) ∂au
a = 0, (4.2.12)

(ρ+ P )ua∂aub + (ηab + uaub)∂aP = 0. (4.2.13)

Interpretation. Equation 4.2.12 describes the change in energy density along fluid flow
(compression increases ρ, expansion decreases it). Equation 4.2.13 gives the relativistic Euler
equation: the fluid accelerates in response to pressure gradients.
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Nonrelativistic Limit

In the nonrelativistic limit, P ≪ ρ and ua ≈ (1, v⃗), and we also assume that dP/dt≪ |∇⃗P |. Under
these approximations, Eqs. 4.2.12 and 4.2.13 reduce to:

∂ρ

∂t
+ ∇⃗ · (ρv⃗) = 0, (4.2.14)

ρ

(
∂v⃗

∂t
+ (v⃗ · ∇⃗)v⃗

)
= −∇⃗P. (4.2.15)

These are precisely the familiar continuity equation and Euler’s equation of fluid dynamics.

Key Point. Special relativity is fully compatible with classical fluid dynamics: Newtonian
results emerge from Eq. 4.2.11 once velocities and pressures are sufficiently small.

Mass–Energy Current

For a family of inertial observers with four-velocity va, define the mass–energy current vector

Ja = −Tabv
b. (4.2.16)

Using Eq. 4.2.11, it follows immediately that

∂aJa = 0. (4.2.17)

Integrating Eq. 4.2.17 over a spacetime region and applying Gauss’s law yields∫
S
Jana dS = 0, (4.2.18)

where na is the unit normal to the boundary S. This expresses the local conservation of energy as
measured by inertial observers.

Geometric view. Equation 4.2.18 states that the net energy flux through any closed 3-surface
in Minkowski spacetime is zero. Energy cannot be created or destroyed inside the region.

4.2.4 Fields in Special Relativity

In addition to particles and fluids, special relativity naturally accommodates classical fields. In this
subsection we illustrate the tensorial formulation of field theory in flat spacetime by considering two
examples: the scalar field and the electromagnetic field.
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Scalar Field

Although no classical scalar field is known to exist in nature, scalar fields provide a useful model. A
real scalar field ϕ on Minkowski spacetime satisfies the Klein–Gordon equation

∂a∂aϕ−m2ϕ = 0. (4.2.19)

Its stress–energy tensor is

Tab = ∂aϕ∂bϕ−
1
2 ηab

(
∂cϕ∂cϕ+m2ϕ2). (4.2.20)

Interpretation. The first term represents directional derivatives of ϕ (kinetic energy). The
second term removes the trace contribution so that Tab represents the local flux of energy and
momentum carried by the field. This tensor satisfies the conservation equation ∂aTab = 0 by
virtue of the field equation 4.2.19.

Electromagnetic Field

In prereativity physics, the electric field E⃗ and magnetic field B⃗ are separate spatial vectors. Special
relativity unifies them into a single antisymmetric tensor field Fab, called the electromagnetic field
tensor. This tensor has 6 independent components, corresponding to the 3 components of E⃗ and
the 3 components of B⃗.

For an observer with four-velocity va, the electric field measured by that observer is

Ea = Fabv
b, (4.2.21)

while the magnetic field is given by

Ba = −1
2 ϵabcdF

cdvb. (4.2.22)

Here ϵabcd is the totally antisymmetric tensor with ϵ0123 = 1 in a right-handed orthonormal basis,
and with ϵabcdϵ

abcd = −24.

Geometric meaning. Equations 4.2.21–4.2.22 decompose the antisymmetric tensor Fab into
spatial electric and magnetic components relative to an observer. Different observers see different
E⃗ and B⃗ fields, but the underlying tensor Fab is the true physical object.

Maxwell’s Equations

In tensor form, Maxwell’s equations take the elegant and compact form

∂aFab = −4πjb, (4.2.23)
∂[aFbc] = 0, (4.2.24)
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where ja is the electric four-current. The antisymmetry of Fab implies

0 = ∂b∂aFab = −4π ∂bjb, (4.2.25)

so Maxwell’s equations imply charge conservation.

The motion of a particle of charge q and mass m in the electromagnetic field is governed by the
Lorentz-force law:

ua∂aub = q

m
Fbcu

c, (4.2.26)

where ua is its future-directed unit timelike four-velocity.

Stress–Energy Tensor of the Electromagnetic Field

The electromagnetic field has stress–energy tensor

Tab = 1
4π

(
FacFb

c − 1
4ηabFcdF

cd
)
. (4.2.27)

This tensor satisfies the energy condition (4.2.9). Furthermore,

∂aTab = 0

whenever Maxwell’s equations hold and ja = 0.

The Vector Potential

By the Poincaré lemma (Appendix B), the equation ∂[aFbc] = 0 implies the existence of a vector
field Aa such that

Fab = ∂aAb − ∂bAa. (4.2.28)

In terms of Aa, Maxwell’s equation 4.2.23 becomes

∂a(∂aAb − ∂bAa) = −4πjb. (4.2.29)

Gauge freedom. The potential Aa is not unique: replacing Aa by Aa + ∂aχ leaves Fab

unchanged. The function χ is called a gauge function. This freedom is essential for understanding
electromagnetic waves.

To fix the gauge, we may choose χ such that the Lorenz gauge condition holds:

∂aAa = 0. (4.2.31)

Using the commutativity of derivatives in flat spacetime, Eq. 4.2.29 becomes

∂a∂aAb = −4πjb. (4.2.32)
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Electromagnetic Waves

We now seek source-free (ja = 0) solutions of the form

Aa = Ca e
iS , (4.2.33)

where Ca is a constant vector field (constant norm and parallel-transported), and S is the phase.
Substitution into Eq. 4.2.32 yields the eikonal equations

∂a∂aS = 0, (4.2.34)
∂aS ∂

aS = 0, (4.2.35)
Ca∂

aS = 0. (4.2.36)

Null hypersurfaces and light propagation. Equation 4.2.35 states that the gradient
ka = ∂aS is null: kak

a = 0. Thus the surfaces of constant phase are null hypersurfaces.
Differentiating Eq. 4.2.35 shows that the integral curves of ka satisfy

kb∂bka = 0,

i.e. they are null geodesics. Hence electromagnetic waves propagate along null geodesics of
Minkowski spacetime—the mathematical statement that light travels on the light cone.

The frequency of the wave as measured by an observer with four-velocity va is

ω = −va∂aS = −vaka. (4.2.38)

The most important solutions of the form 4.2.33 are plane waves:

S =
3∑

µ=0
kµx

µ, (4.2.39)

where kµ are constants, and hence ka is a constant null vector. All well-behaved electromagnetic
solutions at large distances can be expressed as superpositions of such plane waves.

Conclusion. Maxwell’s equations predict that light propagates along null geodesics. This
justifies the terminology “light cone” and connects directly with the causal structure of spacetime.

4.3 General Relativity

4.3.1 From Special Relativity to a New Theory of Gravity

Maxwell’s theory provides a unified and remarkably successful description of electricity, magnetism,
and light, and its formulation is naturally compatible with the framework of special relativity.
One might therefore expect the next logical step to be the development of a relativistic theory of
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gravitation analogous to the way Maxwell’s theory generalizes Coulomb’s law. In such a theory,
gravitational effects would be incorporated into special relativity without altering its underlying
conception of spacetime.

However, Einstein chose a completely different path. Rather than attempting to modify Newtonian
gravitation within the flat spacetime of special relativity, he proposed an entirely new theory: general
relativity, a theory in which gravitation is inseparable from the geometry of spacetime itself. As
already noted in the introduction, Einstein was guided by two major ideas: the equivalence principle
and Mach’s principle.

Conceptual summary. Maxwell’s theory fits neatly into special relativity, but Newtonian
gravity does not. Einstein’s key insight was that gravitation could not be treated as an ordinary
force within the flat geometry of special relativity. Instead, gravity is geometry: a manifestation
of the curvature of spacetime.

To appreciate the role of the equivalence principle in shaping this viewpoint, consider how one
measures electromagnetic fields in special relativity. One first introduces “background observers”
who are not subject to electromagnetic forces (for example, observers that are electrically neutral
and carry no magnetic moment). These observers, being free of non-gravitational forces, move along
geodesics of the flat spacetime metric and therefore define what we call inertial observers. A charged
test body released in the vicinity of such observers will then deviate from inertial motion according
to the electromagnetic field, as described by Eq. 4.2.26. In this way, the electromagnetic field can
be experimentally determined.

Key idea. Electromagnetism can be measured relative to inertial observers because such
observers can be constructed—they are bodies which feel no electromagnetic forces.

4.3.2 The Equivalence Principle and the Failure of Background Observers

If we attempt to apply the same measurement procedure to gravitation that we used for electro-
magnetism, we immediately encounter a fundamental obstacle. In electromagnetism, “background
observers” are chosen so that they are insulated from electromagnetic forces—electrically neutral,
no dipole moment, etc.—and therefore move on inertial (i.e. geodesic) world lines of the flat metric.
The deviation of a charged test body from these geodesics reveals the electromagnetic field.

The equivalence principle states that all bodies fall in exactly the same way in a gravitational
field: all freely falling bodies follow the same trajectories regardless of their composition or internal
structure. Consequently, there is no physical procedure by which we can insulate an observer from
gravitational forces. Any observer will fall in precisely the same way as a test body.

Thus, there is no natural “background motion” against which gravitational effects can be measured.
A freely falling observer near a test body will move in exactly the same way as the test body, so
we cannot define a gravitational field by comparing their motions. We lack an analogue of the
electromagnetic construction of inertial observers.
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Implication of the equivalence principle. Because all bodies fall alike, gravitation cannot
be viewed as an ordinary force field that acts differently on different materials. There is no way
to separate out the gravitational influence on an observer in order to measure a “gravitational
force field” in the same manner as an electromagnetic field.

It is, of course, logically possible that sufficiently complicated and delicate experimental procedures
might eventually allow one to construct inertial observers in the flat-spacetime sense and thereby
measure a gravitational force field. If special relativity were the correct description of spacetime, one
could in principle determine the (flat) spacetime metric by metrological operations—using clocks,
metersticks, and the behavior of freely falling bodies—and thereby construct inertial observers
whose geodesics are determined by that flat metric.

However, if inertial observers had to carry rocket engines to counteract gravitational effects,
then—aside from this external propulsion—the gravitational force field could be measured in a
manner analogous to electromagnetism. In this case, the equivalence principle might appear as an
odd quirk of the Newtonian gravitational force law.

But this entire picture changes if we take seriously the possibility that special relativity is not valid
globally, and that spacetime may not possess a flat metric at all.

4.3.3 The Central Hypothesis: Gravity is Curved Spacetime

The basic framework of general relativity arises from adopting the opposite viewpoint from the one
just discussed. Rather than attempting—even in principle—to construct inertial observers in the
special–relativistic sense and then regard deviations from inertial motion as effects of a “gravitational
force field,” we instead make the following bold hypothesis:

The spacetime metric is not flat, as was assumed in special relativity. The world lines of
freely falling bodies in a gravitational field are the geodesics of the (curved) spacetime
metric.

In this picture, the freely falling observers themselves define the geodesics of the true spacetime
geometry. These geodesics now play the role that the “background observers” played in electro-
magnetism. The motion that special relativity would have interpreted as acceleration due to a
gravitational force is now reinterpreted as geodesic motion in a curved spacetime.

Consequently, “absolute gravitational force” ceases to have meaning. However, the relative gravita-
tional force—that is, the tidal force between neighboring freely falling bodies—does have meaning.
This relative acceleration is governed by the geodesic deviation equation (Eq. 3.3.18).

Key idea. Gravity is not a force field that pushes or pulls bodies; rather, it is a manifestation
of spacetime curvature. Freely falling bodies follow geodesics of the metric gab, and the only
physically meaningful gravitational effects are tidal effects encoded in the curvature tensor.
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This viewpoint raises an immediate question: how can we reconcile the absence of a well-defined
gravitational force with the familiar Newtonian picture of a gravitational acceleration of 980 cm/s2

at the Earth’s surface? Consider an object at rest on the Earth’s surface. In Newtonian theory,
this object remains stationary because the upward force from the surface balances the downward
gravitational force. In general relativity, by contrast, the only force acting on the object is the force
from the surface. A freely falling body in the Earth’s gravitational field accelerates downward at
980 cm/s2, but the object on the surface does not fall because the surface exerts an upward force
which causes its worldline to deviate from a geodesic by exactly this amount.

Thus, “gravitational force” in the Newtonian sense corresponds in general relativity to the deviation
of a worldline from a geodesic. If there is a time translation symmetry in the spacetime region—as
near the surface of the Earth—one may define a family of preferred observers using this symmetry
and thus define a gravitational force field in this restricted sense. But in general, when no such
symmetry exists, no preferred background observers can be defined, and the only meaningful remnant
of gravity is the tidal acceleration between nearby geodesics.

4.3.4 Why Spacetime Need Not Be R4: Lorentz Metrics on General Manifolds

In special relativity, spacetime is taken to be the vector space R4 equipped with the flat Minkowski
metric ηab. General relativity, by contrast, removes both of these assumptions:

1. Spacetime need not be a vector space.
2. The metric need not be flat.

Instead, spacetime is a smooth 4–dimensional manifold M , and the geometry is encoded in a
Lorentzian metric gab defined on M . All physical predictions depend only on (M, gab); no preferred
global coordinates are assumed.

Local structure. Although M need not be globally R4, each point p ∈M possesses a tangent
space TpM which is a Lorentzian vector space. Thus the “local Minkowski” properties of special
relativity remain valid pointwise, even though the global structure of spacetime may be curved or
may have nontrivial topology.

Equivalence principle revisited. Because each tangent space carries the metric gab(p), we can
always choose coordinates at p such that

gµν(p) = ηµν , Γρ
µν(p) = 0.

These are Riemannian normal coordinates. Consequently, the laws of special relativity always hold
at a point, which is the mathematical content of the equivalence principle.

Freedom in global structure. Nothing in the local Lorentzian structure fixes the global form of
M . Spacetime could be:

• topologically R4,
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• or R3 × S1 (closed time direction),
• or S3 × R (closed spatial slices),
• or any smooth 4–manifold that admits a Lorentz metric.

The global topology has physical consequences—e.g. compact spatial slices affect cosmology—but
these global questions cannot be answered by the local geometry alone.

Key idea. General relativity is a local theory: curvature tells you how nearby geodesics behave,
not what the global shape of spacetime is. Einstein’s equations constrain gab locally, but the
global structure of spacetime is determined by both the equations and the topology of M .

4.3.5 The Principles Governing Physics in Curved Spacetime

Having introduced the idea that spacetime is a manifold M equipped with a Lorentzian metric
gab, we now examine how the laws of physics are to be formulated in this new geometric setting.
General relativity does not merely modify Newtonian gravity; it reshapes the very meaning of
physical quantities. Wald emphasizes that physics in curved spacetime is guided by two foundational
principles.

1. General Covariance. The first principle states:

The equations of physics must be expressed entirely in terms of spacetime tensor fields
and must hold in all coordinate systems.

Since there is no flat background metric in general relativity, all geometric and physical objects
must be defined directly in terms of gab and the structures derived from it.

Key idea. General covariance is not merely coordinate–independence. It asserts that the only
meaningful quantities in physics are tensor fields on (M, gab). There is no “hidden” flat metric
ηab.

Phrases such as “spacetime vector” or “spacetime gradient” acquire meaning only through gab,
which determines lengths, angles, causal structure, and the connection ∇a.

2. Reduction to Special Relativity. The second principle:

Wherever gravitational effects become negligible (i.e. where gab ≈ ηab), the laws of physics
must reduce to those of special relativity.

This ensures that the well-tested flat–spacetime physics is recovered in the appropriate limit.
Concretely, one follows the heuristic minimal substitution rule:

ηab → gab, ∂a → ∇a,
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and leaves the form of the physical equations otherwise unchanged.

Warning. This “rule” is only a heuristic. Wald emphasizes that it is not a mathematically precise
prescription, and it fails in certain important cases. We will later encounter counterexamples
where additional structure is needed.

Implications for Physical Fields. Even though the manifold M need not be R4, and the metric
need not be flat, the types of tensorial physical fields remain the same as in special relativity:

• a particle is described by a unit timelike tangent vector ua;
• a perfect fluid by (ρ, P, ua);
• electromagnetic fields by an antisymmetric tensor Fab;
• stress–energy by a symmetric tensor Tab.

But now all contractions, norms, and derivatives use gab and its compatible derivative operator ∇a.

Key idea. General relativity modifies the geometric background of physics, not the represen-
tation type of physical fields. The same tensor fields appear, but now they live on a curved
manifold and are coupled to gab.

The Geodesic Equation Reappears. The special–relativistic force–free condition

ua∂au
b = 0

lifts via minimal substitution to the covariant form

ua∇au
b = 0. (4.3.1)

This is exactly the invariant geodesic equation introduced in Chapter 3. It expresses the central
idea of general relativity:

A freely falling particle moves along a geodesic of the spacetime metric.

This marks the beginning of Wald’s development of motion, forces, and stress–energy in curved
spacetime. In the next subsection, we follow Wald into the discussion of 4–momentum and the
generalization of the Lorentz force.

4.3.6 Motion, 4–Momentum, and Forces in Curved Spacetime

Equation (4.3.1),
ua∇au

b = 0, (4.3.1)
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states that a freely falling particle moves on a geodesic of the spacetime metric gab: its 4–velocity
ua is parallel transported along its own worldline.

In the presence of a non-gravitational force, the particle no longer moves geodesically. For a charged
particle of (rest) mass m and charge q moving in an electromagnetic field Fab, Wald takes over from
special relativity the Lorentz force law, replacing ηab by gab and ∂a by ∇a:

ua∇au
b = q

m
F b

cu
c. (4.3.2)

Here ∇a is the derivative operator compatible with gab. Indices are raised and lowered using gab

and its inverse gab, so F b
c = gbdFdc.

Orthogonality of the force. Contracting Eq. (4.3.2) with gabu
a and using the antisymmetry

of Fab shows that ubF
b
cu

c = 0. Thus the 4–acceleration is orthogonal to the 4–velocity, just as
in special relativity: the Lorentz force changes the particle’s direction but not its rest mass.

4–momentum and energy. The (rest) mass m of the particle is defined so that

pa ≡ mua (4.3.3)

is its 4–momentum. Given an observer with 4–velocity va at the same event on the worldline, the
energy of the particle as measured by that observer is

E = −pav
a. (4.3.4)

Here the minus sign reflects the fact that both ua and va are future directed timelike vectors with
gabv

avb = −1.

No global inertial observers. In curved spacetime there is, in general, no natural way to
compare vectors at widely separated points; parallel transport depends on the curve used. Thus
there is no “global family” of inertial observers, and no invariant definition of the energy of a
distant particle. Energy is always defined relative to a local observer at the event where the
measurement is made.

Stress–energy of a perfect fluid. Continuous matter distributions are described by a stress–
energy tensor Tab. For a perfect fluid, characterized by proper density ρ, pressure P , and 4–velocity
ua, Wald writes

Tab = ρ uaub + P
(
gab + uaub

)
, (4.3.5)

the same form as in special relativity but with gab in place of ηab. The first term represents the
energy density carried with the fluid’s motion; the second term encodes the isotropic pressure.

The motion of matter and the exchange of energy and momentum are encoded in the covariant
conservation law

∇aTab = 0. (4.3.6)

This equation replaces ∂aTab = 0 from flat spacetime.
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To see what Eq. (4.3.6) implies for a perfect fluid, we project along and orthogonal to ua. Contracting
with ub gives

ub∇aTab = 0 =⇒ ua∇aρ+ (ρ+ P )∇au
a = 0, (4.3.7)

which is the relativistic energy-balance equation for the fluid.

Next, project orthogonally to ua with the spatial projector hc
b ≡ gc

b + ucub. Using hc
bu

b = 0 and
Eq. (4.3.5), the spatial projection of ∇aTab = 0 yields

(ρ+ P )ua∇aub +
(
gab + uaub

)
∇aP = 0. (4.3.8)

This is the relativistic Euler equation: it describes how pressure gradients accelerate the fluid
worldlines, with the effective inertial mass density given by ρ+ P .

Local vs. global conservation. In flat spacetime one can often find a timelike vector field
va that is covariantly constant, ∇av

b = 0, leading to a global conservation law for energy. In
curved spacetime such a field typically does not exist. Equation (4.3.6) therefore expresses a
local conservation of energy–momentum, valid in small regions, rather than a global conservation
law defined with respect to a preferred family of inertial observers.

4.3.7 Scalar Fields and Maxwell Fields in Curved Spacetime

We have seen how perfect fluids and point particles generalize naturally from special relativity to
curved spacetime. Wald now considers how the same minimal–substitution principles apply to field
equations, beginning with the simplest case: a real scalar field.

The Klein–Gordon field. In special relativity, a (real) scalar field ϕ of mass m satisfies

ηab∂a∂bϕ−m2ϕ = 0.

Following the prescription ηab → gab and ∂a → ∇a, the natural curved–spacetime generalization is

∇a∇aϕ−m2ϕ = 0. (4.3.9)

This is the Klein–Gordon equation on a curved background.

Stress–energy tensor of a scalar field. The scalar field carries energy–momentum. The
stress–energy tensor derived from the minimally coupled Lagrangian is

Tab = (∇aϕ)(∇bϕ)− 1
2gab

[
(∇cϕ)(∇cϕ) +m2ϕ2]. (4.3.10)

It satisfies the covariant conservation law ∇aTab = 0 as a direct consequence of Eq. (4.3.9).
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Non-uniqueness of minimal substitution. Wald emphasizes that minimal substitution is
not the only reasonable generalization. For example, one could add a curvature term:

∇a∇aϕ−m2ϕ− αRϕ = 0, (4.3.11)

where α is a constant. This equation still respects general covariance and reduces to the flat-space
equation when R = 0. The choice α = 1/6 is special because it yields conformal invariance for
m = 0.

Maxwell’s equations in curved spacetime. The generalization of Maxwell’s equations is more
straightforward. The electromagnetic field is still represented by an antisymmetric 2-form Fab, and
the equations become

∇aFab = −4πjb, (4.3.12)

∇[aFbc] = 0. (4.3.13)

Equation (4.3.13) is unchanged because it expresses the closure of Fab: there exists a vector potential
Aa such that Fab = ∇aAb −∇bAa.

The electromagnetic stress–energy tensor is obtained from Eq. (4.2.27) by simply replacing ηab with
gab:

Tab = 1
4π

(
FacFb

c − 1
4gabFcdF

cd
)
. (4.3.14)

Lorentz gauge and curvature. If we impose the Lorentz gauge ∇aAa = 0, then the field
equation for Aa becomes

∇a∇aAb −Rb
aAa = −4πjb. (4.3.15)

The extra curvature term Rb
aAa arises because covariant derivatives do not commute.

Insight. Had we naïvely replaced ∂a∂
aAb with ∇a∇aAb, we would miss the curvature term.

Equation (4.3.15) demonstrates again that minimal substitution is not a precise algorithm.

Geometrical optics approximation. If the electromagnetic field varies rapidly compared to
the scale of the curvature, the vector potential may be written in the WKB form

Aa = Cae
iS , (4.3.16)

where derivatives of Ca are small. Substituting into the homogeneous Maxwell equation (with
jb = 0) and keeping only dominant terms gives

∇aS∇aS = 0. (4.3.17)

Thus ka ≡ ∇aS is a null vector, and the rays of light follow null geodesics:

ka∇ak
b = 0.
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This matches our earlier geometrical-optics interpretation from flat spacetime, now justified in
curved geometry.

Conclusion. Light follows null geodesics of the spacetime metric. Curvature affects not only
the path but also the local frequency and amplitude of electromagnetic waves.

4.3.8 From Tidal Forces to Einstein’s Equation

We have now described how general relativity treats gravitation in terms of curved spacetime
geometry and how the standard laws of physics are modified in this framework. The remaining
ingredient is the equation that relates the geometry of spacetime to the matter distribution. Wald
obtains this by comparing the description of tidal forces in Newtonian gravity and in general
relativity.

Tidal forces in Newtonian theory. In the Newtonian theory, the gravitational field is derived
from a potential ϕ. The tidal acceleration between two nearby particles, with separation vector x⃗, is

−(x⃗ · ∇⃗)∇⃗ϕ,

i.e. it is governed by second spatial derivatives of ϕ.

Tidal forces in general relativity. In general relativity, the relative acceleration of two nearby
geodesics with separation vector xa and tangent 4–velocity ua is given by the geodesic deviation
equation (Eq. 3.3.18),

D2xa

Dτ2 = −Ra
bcd u

bxcud.

Thus tidal forces are encoded in the curvature tensor Rabcd.

Comparing these two descriptions, Wald is led to the correspondence

Rcbd
a ucud ←→ ∂b∂

aϕ. (4.3.18)

Relating curvature to energy density. In Newtonian gravity, the potential satisfies Poisson’s
equation

∇2ϕ = 4πρ, (4.3.19)

where ρ is the (mass) density of matter.

In special and general relativity, the energy properties of matter are encoded in the stress–energy
tensor Tab. For an observer with 4–velocity ua, the local energy density measured by that observer is

ρ(obs) = Tabu
aub.

Thus Wald is led to the correspondence

Tabu
aub ←→ ρ, (4.3.20)
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at least in the regime where Newtonian theory should be valid.

Putting (3.3.18), (4.3.9) and the correspondences (3.3.18), (4.3.9)–(4.3.14) together suggests that
an equation of the form

Rab ∼ Tab

should hold, with a proportionality constant chosen so that the Newtonian limit is reproduced. A
natural first guess is

Rab = 4πTab.

Indeed, this equation was originally postulated by Einstein. However, it turns out to be incompatible
with the conservation law ∇aTab = 0.

Role of the Bianchi identity. The contracted Bianchi identity (Eq. (3.2.31)) states that

∇a(Rab − 1
2gabR

)
= 0.

If we required Rab = 4πTab, then taking the divergence and using ∇aTab = 0 would imply

∇bR = 0,

so R would have to be constant throughout the universe. This is an unphysical restriction on the
matter distribution, and it forces us to reject Rab = 4πTab as the fundamental field equation.

The Einstein tensor. The above difficulty suggests the correct modification. Define the Einstein
tensor

Gab ≡ Rab −
1
2Rgab.

By construction, ∇aGab = 0 identically, for any metric gab. We are therefore led to the equation

Gab ≡ Rab −
1
2Rgab = 8πTab. (4.3.21)

This is Einstein’s field equation. It relates the curvature of spacetime directly to the stress–energy
tensor of matter and fields.

Taking the trace of (4.3.21), we find
R = −8πT, (4.3.22)

where T ≡ T a
a is the trace of the stress–energy tensor. Substituting back into (4.3.21) yields

Rab = 8π
(
Tab −

1
2gabT

)
. (4.3.23)

Newtonian limit check. In situations where Newtonian gravity should be valid, the energy
density ρ measured by an observer roughly at rest with respect to the matter dominates over stresses
(with c = 1). In this case

T ≈ −ρ ≈ −Tabu
aub,
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and Eqs. (3.3.18), (4.3.9), and (4.3.14) lead to

Rabu
aub ≈ 4πTabu

aub,

which reproduces the Newtonian correspondence between curvature and mass density. Thus (4.3.21)
has the correct Newtonian limit.

Summary. Einstein’s equation
Gab = 8πTab

is the central dynamical law of general relativity. It states that the Einstein tensor Gab—a
specific combination of curvature components with vanishing divergence—is determined by the
stress–energy tensor Tab of matter and fields. Geometry and matter are inseparably linked.

4.3.9 Remarks on the Nature of Einstein’s Equation

Wald closes the section with several important comments about the structure and interpretation of
Eq. (4.3.21).

Mathematical character. Expressed in a coordinate system, the metric components gµν satisfy
a coupled system of nonlinear second–order partial differential equations. For a Lorentzian metric,
these equations are of hyperbolic (wave) type and admit a well–posed initial value formulation (see
Chapter 10). Much of the rest of the book is devoted to studying solutions of these equations and
their properties.

Analogy with Maxwell’s equations. In one sense, Eq. (4.3.21) is analogous to Maxwell’s
equation ∇aF

ab = 4πjb, with Tab playing the role of the source ja. However, there is an important
difference: for Maxwell’s equation one may think of specifying ja first, and then solving for Fab.
In general relativity, the stress–energy tensor of realistic matter fields (fluids, electromagnetic
fields, scalar fields, etc.) contains the metric gab explicitly. Thus Tab and gab must be solved for
simultaneously, not separately.

Equations of motion from ∇aTab = 0. As we have set things up, the equations of motion
of matter fields are postulated first (e.g. the geodesic equation for particles, the Euler equation
for fluids, Maxwell’s equations for the electromagnetic field). Einstein’s equation then relates the
resulting stress–energy tensor to curvature.

However, Einstein’s equation implies ∇aTab = 0 identically, and this relation encodes a great deal of
information about the motion of matter. For a perfect fluid with stress–energy tensor

Tab = ρuaub + P (gab + uaub),

the condition ∇aTab = 0 reproduces the fluid equations of motion, including the geodesic motion
of dust when P = 0. More generally, it can be shown that any sufficiently small body whose
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self–gravity is weak must move on a geodesic of the spacetime metric. Thus Einstein’s equation is
consistent with—and in appropriate limits actually implies—the geodesic hypothesis.

Final summary of the section. The content of general relativity can be encapsulated as
follows:

• Spacetime is a manifold M equipped with a Lorentzian metric gab.
• Matter and non-gravitational fields are described by tensor fields on (M, gab) with

stress–energy tensor Tab.
• Test bodies move on geodesics of gab; tidal effects are encoded in the curvature tensor
Rabcd.

• The metric is not fixed but dynamical, determined by Einstein’s equation Gab = 8πTab.

4.4 Linearized Gravity: The Newtonian Limit and Gravitational
Radiation

4.4.1 The Linearized Einstein Equation

The full Einstein equation is highly nonlinear, which makes exact solutions difficult to obtain. How-
ever, in many physically important situations—such as weak gravitational fields, small perturbations
of flat spacetime, and the generation and propagation of gravitational waves—the deviations of the
spacetime metric from the flat Minkowski metric are very small.

• The goal of this section is to derive the linearized Einstein equation, valid when the gravitational
field is weak.

• This linearization allows us to treat gravity as a small perturbation γab of flat spacetime and
to obtain a wave equation for these perturbations.

• This approximation is foundational for understanding gravitational waves, the Newtonian
limit of GR, and the interpretation of gravity as a massless spin-2 field.

Throughout this section we work in a global inertial coordinate system and retain only terms linear
in the perturbation γab.

4.4.1.1 Perturbing the Metric

We assume that the physical metric gab differs only slightly from the flat Minkowski metric ηab, and
we write

gab = ηab + γab, (4.4.1)

where |γab| ≪ 1 in some global inertial coordinate system. (Since there is no positive definite
norm on tensors in relativity, “smallness” means simply that the components γµν are ≪ 1 in these
coordinates.)

All index raising and lowering in linearized gravity will be performed with ηab and its inverse ηab.
This is because using gab to raise/lower indices would introduce terms of order γ2

ab, which are
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discarded in the linear approximation.

A notable exception is that gab itself is defined as the inverse of gab. To linear order, we solve

(ηac − γac)(ηcb + γcb) = δa
b

and obtain
gab = ηab − γab. (4.4.2)

4.4.1.2 Linearized Christoffel Symbols

We denote by ∂a the flat derivative compatible with ηab. Substituting (4.4.1) into the definition of
the Christoffel symbols,

Γρ
µν = 1

2g
ρσ (∂µgσν + ∂νgσν − ∂σνgµν)

Γρ
µν = 1

2(ηρσ − γρσ) (∂µ(ησν + γσν) + ∂ν(ησν + γσν)− ∂σν(ηµν + γµν))

and keeping only terms linear in γab yields

Γc
ab = 1

2 η
cd(∂aγbd + ∂bγad − ∂dγab

)
. (4.4.3)

after recognizing that ∂aηbc = 0 and throwing away γρσ∂µγσµ terms because they are second order
in γ.

4.4.1.3 Linearized Ricci Tensor

The Ricci tensor is
Rab = ∂cΓc

ab − ∂aΓc
cb + Γc

abΓd
cd − Γc

adΓd
cb

The linearized Ricci Tensor is,

R
(1)
ab = ∂c∂(aγb)c −

1
2 ∂

c∂cγab −
1
2 ∂a∂bγ (4.4.4)

where γ ≡ γc
c is the trace and the symmetrization ∂c∂(aγb)c = ∂c∂aγbc + γc∂bγac.

Ricci Tensor (Details of the Linearization) The full derivation of the linearized Ricci Tensor
follows.Recall that to linear order in γab the Christoffel symbols are

Γc
ab = 1

2 η
cd(∂aγbd + ∂bγad − ∂dγab

)
. (4.4.3)
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The Ricci tensor is defined by

Rab = ∂cΓc
ab − ∂aΓc

cb + Γc
abΓd

cd − Γc
adΓd

cb.

In the linear approximation we discard all terms quadratic in γab, so the ΓΓ terms are dropped.
Hence

R
(1)
ab = ∂cΓc

ab − ∂aΓc
cb. (*)

Step 1: Compute ∂cΓc
ab. Using (4.4.3),

∂cΓc
ab = ∂c

[1
2 η

cd(∂aγbd + ∂bγad − ∂dγab

)]
= 1

2 η
cd(∂c∂aγbd + ∂c∂bγad − ∂c∂dγab

)
,

since ∂cη
cd = 0 in inertial coordinates.

Now raise the index c with ηcd:

ηcd∂c = ∂d, ηcd∂c∂d = ∂c∂c.

So
∂cΓc

ab = 1
2
(
∂c∂aγbc + ∂c∂bγac − ∂c∂cγab

)
. (1)

Step 2: Compute ∂aΓc
cb. First contract Γc

cb using (4.4.3):

Γc
cb = 1

2 η
cd(∂cγbd + ∂bγcd − ∂dγcb

)
.

Use symmetry γcd = γdc to simplify the last two terms:

ηcd∂bγcd = ∂b(ηcdγcd) = ∂bγ,

where γ ≡ γc
c is the trace.

Also,
ηcd∂dγcb = ∂cγcb.

Thus,
Γc

cb = 1
2
(
∂cγbc + ∂bγ − ∂cγcb

)
= 1

2 ∂bγ,

because the first and third terms are identical.

Therefore,
∂aΓc

cb = 1
2 ∂a∂bγ. (2)
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Step 3: Subtract. Insert (1) and (2) into (*):

R
(1)
ab = 1

2
(
∂c∂aγbc + ∂c∂bγac − ∂c∂cγab

)
− 1

2 ∂a∂bγ.

Combine the first two terms using symmetrization:

∂c∂(aγb)c ≡
1
2 (∂c∂aγbc + ∂c∂bγac) .

Hence the linearized Ricci tensor is

R
(1)
ab = ∂c∂(aγb)c −

1
2 ∂

c∂cγab −
1
2 ∂a∂bγ . (4.4.4)

Contraction of the Linearized Ricci Tensor Starting from the linearized Ricci tensor,

R
(1)
ab = ∂c∂(aγb)c −

1
2 ∂

c∂cγab −
1
2 ∂a∂bγ, γ ≡ γc

c, (4.4.4)

we now contract with ηab to obtain the linearized Ricci scalar.

Step 1: Contract the first term. Using

∂(aγb)c = 1
2(∂aγbc + ∂bγac),

we obtain
ηab∂(aγb)c = ∂aγac.

Thus
ηab∂c∂(aγb)c = ∂c∂aγac.

Step 2: Contract the second term. Since ηabγab = γ,

ηab∂c∂cγab = ∂c∂c γ.

Hence
−1

2 η
ab∂c∂cγab = −1

2 ∂
c∂cγ.

Step 3: Contract the third term.

ηab∂a∂bγ = ∂a∂aγ = ∂c∂cγ,

so
−1

2 η
ab∂a∂bγ = −1

2 ∂
c∂cγ.
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Result: Linearized Ricci Scalar. Combining all three pieces,

R(1) = ∂a∂bγab − ∂c∂cγ. (4.4.5a)

4.4.1.4 Linearized Einstein Tensor

The linearized Einstein tensor is
G

(1)
ab = R

(1)
ab −

1
2 ηabR

(1).

Substituting equations (4.4.4) and (4.4.5a), we obtain the expression for the linearized Einstein
tensor,

G
(1)
ab = ∂c∂(aγb)c −

1
2 ∂

c∂cγab −
1
2 ∂a∂bγ −

1
2 ηab

(
∂c∂dγcd − ∂e∂eγ

)
, (4.4.5)

Eq. 4.4.5 is algebraically complicated. It contains both γab and its trace γ = γc
c in several places,

which obscures the underlying structure of the equations.

Why introduce a trace-reversed field? In analogy with electromagnetism, where working with
the potential Aa becomes simpler in Lorenz gauge, it is useful to redefine the metric perturbation
so that the Einstein tensor takes a simpler, more symmetric form. In particular, many trace terms
combine naturally under a trace-reversal operation.

Definition (trace reversal). Define the trace-reversed perturbation

γ̄ab = γab −
1
2 ηabγ, γ = γc

c. (4.4.6)

Taking the trace of this equation shows that

γ̄ ≡ γ̄c
c = −γ, so γab = γ̄ab −

1
2 ηabγ̄.

Substituting into G
(1)
ab . Inserting the expression

γab = γ̄ab −
1
2 ηabγ̄

into equation (4.4.5), and rearranging terms, one finds after a short calculation that

G
(1)
ab = −1

2
(
∂c∂c γ̄ab − ∂c∂aγ̄bc − ∂c∂bγ̄ac + ηab∂

c∂dγ̄cd

)
. (4.4.7a)

4.4.1.5 Lorenz Gauge

The perturbation γab is defined only up to an infinitesimal coordinate transformation (a gauge
transformation). Under xa → xa + ξa, the trace-reversed perturbation transforms as

γ̄ab → γ̄ab + ∂aξb + ∂bξa − ηab ∂
cξc.
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Using this freedom, one may impose the Lorenz gauge:

∂aγ̄ab = 0. (4.4.11)

This is the exact gravitational analogue of the Lorenz gauge condition ∂aAa = 0 in electromagnetism.

Simplification in Lorenz gauge. With ∂aγ̄ab = 0, the last three terms of (4.4.7a) vanish, leaving
the remarkably simple equation

G
(1)
ab = −1

2 ∂
c∂c γ̄ab. (4.4.7b)

Lorenz Gauge in Linearized Gravity: What It Really Means
In electromagnetism, gauge freedom reflects the fact that the potential Aa is not unique: adding a
gradient Aa → Aa +∂aΛ does not change the physical field Fab. The Lorenz gauge ∂aAa = 0 is a
convenient condition that simplifies Maxwell’s equations while leaving all observables unchanged.
In linearized gravity, the analogous freedom

γab → γab − ∂aξb − ∂bξa

arises from infinitesimal coordinate transformations xa → xa+ξa. Different choices of coordinates
change the components of the metric perturbation γab but do not change physical tidal forces or
curvature. Thus this “gauge” freedom reflects coordinate redundancy, not freedom in a physical
field.
Introducing the trace-reversed field γ̄ab = γab − 1

2ηabγ allows many trace terms in the linearized
Einstein tensor to combine naturally. Because the transformation of γ̄ab retains the same
structure, one may use the coordinate freedom to impose the Lorenz gauge

∂aγ̄ab = 0.

In this gauge, the linearized Einstein tensor collapses to the simple wave equation

G
(1)
ab = −1

2 □ γ̄ab,

so that
□ γ̄ab = −16πTab.

Thus, the Lorenz gauge is a choice of coordinates that isolates the true radiative degrees of
freedom of the gravitational field and places the linearized Einstein equation in a clean, wave-like
form.

The d’Alembertian (Wave Operator)
The symbol □ denotes the flat-spacetime wave operator (d’Alembertian),

□ ≡ ∂c∂c = ηab∂a∂b.

In inertial coordinates,

□ = − ∂2

∂t2
+ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 .
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Thus,
−1

2 □ γ̄ab = −1
2 η

cd∂c∂d γ̄ab

is simply the Minkowski wave operator acting on γ̄ab.

4.4.1.6 Linearized Einstein Equation

Einstein’s equation to linear order is
G

(1)
ab = 8πTab.

Using (4.4.7b), the linearized Einstein equation becomes

∂c∂c γ̄ab = −16πTab, (4.4.12)

which has exactly the form of the wave equation with source.

Thus the trace-reversed metric perturbation γ̄ab behaves like a massless spin-2 field propagating on
the flat background spacetime (M,ηab).

4.4.2 The Newtonian Limit

The first major test of general relativity is that its predictions must reduce to Newtonian gravity in
the regime where Newton’s theory is already known to be accurate. This corresponds to the case in
which:

• gravitational fields are weak,
• sources move slowly compared to the speed of light,
• material stresses are very small compared to mass density,
• a global inertial coordinate system of the background Minkowski metric ηab is available.

Our goal is to show that, under these approximations, the linearized Einstein equation implies:

a⃗ = −∇⃗ϕ,

i.e. the Newtonian gravitational force law, where ϕ is the Newtonian gravitational potential satisfying
Poisson’s equation ∇2ϕ = 4πρ.

Matter in the Newtonian Limit

To connect the linearized Einstein equation with Newtonian gravity, we must understand the form
of the stress–energy tensor in the Newtonian regime. The assumptions of this limit are:

• matter moves slowly, so |v⃗| ≪ 1,
• pressure is small relative to rest–mass energy density, P ≪ ρ,
• gravitational fields are weak, allowing the use of global inertial coordinates,
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• proper time τ differs negligibly from coordinate time t.

We begin with the exact stress–energy tensor of a perfect fluid,

Tab = (ρ+ P )uaub + P ηab,

and expand each term under the above assumptions.

Four–velocity in the slow–motion limit. In inertial coordinates (t, xi),

ua = γ(1, vi), γ = (1− |v⃗|2)−1/2.

For |v⃗| ≪ 1, we have γ ≈ 1, so

ua ≈ (1, vi), ua = ηabu
b ≈ (−1, vi).

Dominant energy component. The time–time component becomes

T00 = (ρ+ P )u0u0 + Pη00 ≈ ρ(−1)(−1) = ρ,

since P ≪ ρ. This is the dominant term.

Momentum densities. The mixed components satisfy

T0i = (ρ+ P )u0ui + Pη0i ≈ ρ(−1)vi = −ρvi,

which are small because |vi| ≪ 1.

Spatial stresses. The purely spatial components are

Tij = (ρ+ P )uiuj + Pηij ≈ ρ vivj + P δij .

Both terms are negligible compared to ρ, since vivj ≪ 1 and P ≪ ρ.

Resulting form. Therefore,

T00 ≈ ρ, T0i ≪ ρ, Tij ≪ ρ.

This means that, to excellent approximation, the stress–energy tensor has only one significant
component: the mass density measured in an inertial rest frame.

Let ta = (∂/∂x0)a be the unit future-directed time vector of that frame. Then

ta = ηabt
b = (−1, 0, 0, 0),

and the stress–energy tensor takes the Newtonian-limit form

Tab ≈ ρ tatb. (4.4.13)
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This expresses the fact that slowly moving matter with negligible pressure carries almost exclusively
rest–mass energy, with insignificant momentum densities or internal stresses.

Under these assumptions, the linearized Einstein equation

∂c∂c γ̄ab = −16πTab

simplifies drastically. Since the sources vary slowly, we neglect time derivatives of γab. The field
equations reduce to:

∇2γ̄µν = 0, µ, ν ̸= 0, (4.4.14)
∇2γ̄00 = −16πρ. (4.4.15)

The unique solution that vanishes at spatial infinity is γ̄µν = 0 for µ, ν ̸= 0.

Recovering the Newtonian Potential

Define the Newtonian potential by
ϕ ≡ −1

4 γ̄00,

so that (4.4.15) becomes Poisson’s equation:

∇2ϕ = 4πρ. (4.4.17)

Using the definition of the trace-reversed perturbation,

γab = γ̄ab −
1
2ηabγ̄,

one finds that, in the Newtonian limit,

γab = −(4tatb + 2ηab)ϕ. (4.4.16)

Geodesic Motion and Newton’s Second Law

The motion of a freely falling test particle is governed by the geodesic equation,

d2xµ

dτ2 + Γµ
ρσ

dxρ

dτ

dxσ

dτ
= 0. (4.4.18)

To recover Newtonian gravity, we impose the assumptions of the Newtonian regime:

• Velocities are small: In the Newtonian limit, the spatial velocity satisfies |v⃗| ≪ 1, meaning
that the motion of matter is slow compared with the speed of light (in units where c = 1).



4.4 Linearized Gravity: The Newtonian Limit and Gravitational Radiation 119

• Weak gravitational fields: The spacetime metric is only slightly perturbed from flat
Minkowski space,

gµν = ηµν + γµν , |γµν | ≪ 1,
so one may treat γµν as first-order small quantities.

• Proper time is nearly coordinate time: For a timelike worldline,

dτ2 = −gµνdx
µdxν .

When |v⃗| ≪ 1 and g00 ≈ −1, this becomes

dτ = dt
√

1− |v⃗|2 +O(γ) ≈ dt,

so τ differs negligibly from t.

With these assumptions, the 4–velocity is

uµ = dxµ

dτ
= dxµ

dt

dt

dτ
≈ dxµ

dt
,

since dt/dτ ≈ 1.

Thus
uµ = dxµ

dτ
≈
(
dt

dt
,
dxi

dt

)
= (1, vi),

where
vi = dxi

dt
, |vi| ≪ 1.

Lowering the index with the nearly flat metric gives

uµ = gµνu
ν ≈ ηµνu

ν = (−1, vi),

again up to corrections small in |γµν | and |v⃗|.

Step 1: Keeping only leading-order terms. In the geodesic equation, the term

Γµ
ρσ

dxρ

dτ

dxσ

dτ

contains products vρvσ, which are negligible unless both indices are ρ = σ = 0. Thus, to leading
order,

Γµ
ρσ

dxρ

dτ

dxσ

dτ
≈ Γµ

00

(
dx0

dτ

)2

≈ Γµ
00.

Therefore the spatial components of (4.4.18) reduce to:

d2xi

dτ2 + Γi
00 = 0, (i = 1, 2, 3). (4.1)

Using τ ≈ t, this becomes
d2xi

dt2
= −Γi

00. (4.4.19)
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Step 2: Compute the Christoffel symbol Γi
00. In the linearized theory,

gµν = ηµν + γµν ,

and the Christoffel symbols are

Γµ
ρσ = 1

2η
µλ (∂ργσλ + ∂σγρλ − ∂λγρσ) .

Setting ρ = σ = 0 and taking µ = i (a spatial index), we obtain

Γi
00 = 1

2η
iλ (2 ∂0γ0λ − ∂λγ00) .

In the Newtonian limit:

• the gravitational field is static ⇒ ∂0γµν = 0,
• ηiλ picks out λ = i with ηii = +1,

so
Γi

00 = −1
2∂iγ00. (*)

Step 3: Insert the Newtonian form of the metric. Earlier we showed that in the weak-field
limit the metric takes the form

γ00 = −2ϕ, so g00 = −1− 2ϕ,

with ϕ the Newtonian potential.

Substituting γ00 = −2ϕ into (*) gives

Γi
00 = −1

2∂i(−2ϕ) = ∂iϕ. (4.4.20)

Step 4: Recover Newton’s second law. Plugging (4.4.20) into (4.4.19), we obtain

d2xi

dt2
= −∂iϕ.

In vector notation:

a⃗ = d2x⃗

dt2
= −∇⃗ϕ. (4.4.21)

This is exactly Newton’s equation for the gravitational acceleration in a potential ϕ, showing that
geodesic motion reproduces Newton’s second law in the appropriate limit.
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Interpretation

Equations (4.4.17) and (4.4.21) reproduce the foundational equations of Newtonian gravity:

∇2ϕ = 4πρ, a⃗ = −∇ϕ.

Thus, general relativity reduces to Newtonian gravity in the weak-field, slow-motion limit. The
physical interpretation, however, is different:

• In Newtonian theory, the Sun exerts a force on the Earth.
• In general relativity, the Sun curves spacetime; the Earth follows a geodesic in this curved

geometry.

The predictions agree, but the underlying mechanisms differ fundamentally.

4.4.3 Gravitational Radiation (Vacuum)

One of the most important conceptual changes that occurs when one passes from Coulomb’s
electrostatics to Maxwell’s electrodynamics is that the electromagnetic field becomes a genuinely
dynamical system: electromagnetic disturbances can propagate freely through spacetime in the form
of electromagnetic radiation.

A completely analogous phenomenon occurs when one passes from Newtonian gravity to general
relativity. In Newtonian theory, gravity is instantaneous: there is no concept of propagating
gravitational disturbances. In general relativity, however, gravitational perturbations can propagate
as gravitational radiation, i.e. ripples in the curvature of spacetime.

In the context of linearized gravity, this dynamical behavior follows directly from the linearized
Einstein equation in Lorenz gauge. In vacuum (Tab = 0), we have from equations (4.4.11) and
(4.4.12)

∂aγ̄ab = 0, (4.4.25)
and

∂c∂cγ̄ab = 0. (4.4.26)
Thus each component of the trace-reversed metric perturbation γ̄ab satisfies the source-free wave
equation on the flat background spacetime (M,ηab).

Consequently, in the linear approximation, gravitational disturbances propagate at the speed of
light and behave mathematically like a massless spin-2 field. This is the gravitational analogue of
the propagation of electromagnetic waves in Maxwell’s theory.

4.4.3.1 Gauge Freedom in Linearized Gravity

In linearized gravity we write the metric as

gab = ηab + γab, |γab| ≪ 1,
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and consider infinitesimal coordinate transformations

xa → x′a = xa + ξa(x),

with ξa small. To first order in ξa and γab, the metric perturbation transforms as

γ′
ab = γab + ∂aξb + ∂bξa. (4.4.G1)

This is the gauge freedom of linearized gravity. Different choices of ξa correspond to different
coordinate descriptions of the same physical geometry. Consequently, many of the components of
γab have no physical meaning; they can be changed arbitrarily through suitable choices of ξa.

It is therefore essential to impose gauge conditions that eliminate non-physical components. We
now develop a systematic procedure for doing so.

4.4.3.2 Lorenz Gauge: First Stage of Simplification

Define the trace-reversed perturbation

γ̄ab = γab −
1
2ηabγ, γ = γc

c.

The Lorenz gauge condition is
∂aγ̄ab = 0. (4.4.25)

This is directly analogous to the electromagnetic Lorenz gauge ∂aAa = 0. In this gauge, the
linearized Einstein equation reduces to the simple wave equation

□γ̄ab = −16πTab, □ ≡ ∂c∂c.

Gauge freedom remaining in Lorenz gauge. Applying a gauge transformation (4.4.G1),

γ′
ab = γ′

ab −
1
2ηabγ

′

= (γab + ∂aξb + ∂bξa)− 1
2ηabγ

′c
c

= (γab + ∂aξb + ∂bξa)− 1
2ηabη

cdγ′
cd

= (γab + ∂aξb + ∂bξa)− 1
2ηabη

cd(γcd + ∂cξd + ∂dξc)

= (γab + ∂aξb + ∂bξa)− 1
2ηab(γ + ∂cξc + ∂dξd)

= (γab + ∂aξb + ∂bξa)− 1
2ηab(γ + 2∂cξc)

= (γab −
1
2ηabγ) + ∂aξb + ∂bξa − ηab∂

cξc
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so the trace-reversed field transforms as,

γ̄′
ab = γ̄ab + ∂aξb + ∂bξa − ηab ∂

cξc. (4.4.G2)

Imposing the Lorenz condition on the transformed field,

∂αγ′
ab = ∂aγab + ∂a∂aξb + ∂a∂bξa − ∂aηab∂

cξc

= ∂aγab + □ξb + ∂b∂
aξa − ηab∂

a∂cξc

= ∂aγab + □ξb + ∂b∂
aξa − ∂b∂

cξc

and recognizing that ∂b∂
aξa = ∂b∂

cξc gives,

∂aγ̄′
ab = ∂aγ̄ab + □ξb.

Thus the Lorenz condition is preserved if and only if

□ξb = 0. (4.4.27)

Interpretation. Lorenz gauge eliminates four combinations of γab, but it leaves intact all gauge
transformations generated by vector fields ξa satisfying the homogeneous wave equation (4.4.27).
These constitute the residual gauge freedom.

This freedom will now be used to impose further gauge conditions.

4.4.3.3 The Radiation Gauge

In a vacuum region (Tab = 0), the physically relevant part of the field is the radiative portion—the
transverse, traceless components that propagate at the speed of light. To isolate these components, it
is advantageous to impose a gauge analogous to the Coulomb (radiation) gauge of electromagnetism,
where one sets

A0 = 0, ∇ · A⃗ = 0.

In gravity, the useful analogue is to choose coordinates so that

γ = 0, γ0µ = 0. (4.4.RG1)

The first condition removes the trace; the second removes the time–space components. Combined
with Lorenz gauge, these reduce the 10 components of γab to the 2 physical polarizations of
gravitational waves.

However, imposing (4.4.RG1) requires solving explicitly for the gauge vector ξa. We now derive the
necessary equations.
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Deriving the Radiation Gauge Conditions

Under a gauge transformation,
γ′

ab = γab + ∂aξb + ∂bξa,

the trace becomes
γ′ = γ + 2(∂aξa) = γ + 2(−∂tξ0 + ∇⃗ · ξ⃗).

Requiring γ′ = 0 yields
2
(
−∂tξ0 + ∇⃗ · ξ⃗

)
= −γ. (4.4.34a)

Similarly, for the time–space components,

γ′
0µ = γ0µ + ∂0ξµ + ∂µξ0,

and requiring γ′
0µ = 0 gives

∂tξµ + ∂µξ0 = −γ0µ, µ = 1, 2, 3. (4.4.34c)

Differentiating (4.4.34a) and (4.4.34c) yields second-order elliptic equations for ξ0 and ξµ:

2
[
−∇2ξ0 + ∇⃗ · (∂tξ⃗)

]
= −∂tγ, (4.4.34b)

∇2ξµ + ∂µ(∂tξ0) = −∂tγ0µ. (4.4.34d)

Equations (4.4.34a)–(4.4.34d) determine the values of ξa and its time derivatives on an initial
hypersurface t = t0.

Extension into spacetime. To extend ξa off the initial slice, we use the fact that residual gauge
freedom requires

□ξa = 0,

so ξa with the initial data determined by (4.4.34a)–(4.4.34d) is evolved throughout the vacuum
region by solving the wave equation.

Final result. With this choice of ξa, the gauge-transformed field satisfies:

∂aγ̄′
ab = 0, γ′ = 0, γ′

0µ = 0.

This is the radiation gauge. In vacuum, the remaining components γ′
ij contain only the two transverse,

traceless gravitational-wave polarizations.
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What a Gauge Condition Really Means
In linearized gravity, the metric perturbation γab contains far more mathematical components
than there are physical degrees of freedom. A gauge condition eliminates this redundancy by
selecting one convenient representative from a whole family of equivalent descriptions. This idea
has simple analogues in elementary mathematics:

1. Coordinate Redundancy (polar vs. Cartesian). A point in the plane can be written
as (r, θ), but (r, θ) and (r, θ + 2π) describe the same point. Choosing 0 ≤ θ < 2π removes this
redundancy. Likewise, many tensors γab describe the same physical spacetime; a gauge condition
chooses a standard representative.

2. Electromagnetic Potentials. The electric and magnetic fields are unchanged when
Aa → Aa + ∂aχ. The potentials contain “pure gauge” information that does not affect physics.
One imposes the Lorenz or Coulomb gauge to remove this ambiguity. In linearized gravity,
γab → γab + ∂aξb + ∂bξa plays the same role.

3. Fixing an Equivalence Class. Consider all functions differing by ax+b: f(x) ∼ f(x)+ax+b.
These represent the same physical object. Imposing f(0) = 0 and f ′(0) = 0 selects one
representative. In gravity, gauge conditions such as ∂aγ̄ab = 0 (Lorenz gauge) or γ = 0, γ0µ = 0
(radiation gauge) perform the same task for γab.

Summary. A gauge condition removes the non-physical freedom in γab, just as choosing an
angular range in polar coordinates or fixing an electromagnetic potential removes representational
ambiguity. Different gauge choices are simply different coordinate conventions for expressing
the same physical gravitational field.

Wave Equation in Radiation Gauge

Starting from the linearized Einstein equation in Lorenz gauge,

□γ̄ab = −16πTab, (4.4.12)

and restricting to a vacuum region where Tab = 0, we obtain the source-free wave equation

□γ̄ab = 0. (4.4.12∗)

In the radiation gauge we impose (cf. the construction leading to equations (4.4.34a)–(4.4.34d))

γ = 0, γ0µ = 0.

When the trace vanishes, the trace-reversed perturbation reduces to the original one. Using Wald’s
trace-reversal definition (4.4.6),

γ̄ab = γab − 1
2ηabγ, (4.4.6)

we have, in radiation gauge,
γ̄ab = γab. (4.4.6∗)

Thus in this gauge the vacuum equation (4.4.12∗) becomes

□γab = 0. (4.4.12∗∗)
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Because the radiation gauge sets all components γ0µ to zero and preserves this condition under
evolution, the only nonvanishing dynamical components are the spatial ones. Therefore, for
µ, ν = 1, 2, 3, we obtain the simple wave equation

∂c∂c γµν = 0, (µ, ν = 1, 2, 3), (4.4.37)

which governs the propagation of the physical gravitational-wave degrees of freedom.

Why Certain Components Become Nonphysical in the Linearized, Vacuum Regime
In a region far from sources, the linearized Einstein equation reduces to

□γ̄ab = 0,

together with the Lorenz gauge constraint

∂aγ̄ab = 0.

These two relations dramatically restrict which components of the metric perturbation can
represent genuine curvature. In this regime, the mixed space–time components γ0µ (and the trace
γ) solve the homogeneous wave equation but do not contribute to the transverse, propagating
degrees of freedom allowed in vacuum. Their solutions describe non-radiative, longitudinal
distortions of the metric which carry no physical curvature.
Because these components have no dynamical or gauge-invariant influence on the tidal field
measured by freely falling observers, they become “pure gauge”: they can be eliminated by an
infinitesimal coordinate transformation without changing any physical observable. Consequently,
in this setting one can impose the radiation gauge,

γ = 0, γ0µ = 0,

leaving only the transverse, traceless spatial components γTT
ij . These two remaining degrees of

freedom correspond to the physical + and × polarizations of a massless spin-2 field.
Summary. The combined effect of (i) being in vacuum, (ii) linearizing the equations, and (iii)
exploiting residual gauge freedom causes the non-radiative parts of the metric perturbation to
drop out entirely. What remains are only the gauge-invariant, propagating components that
constitute true gravitational radiation.

Plane-Wave Solutions in Radiation Gauge

In the radiation gauge (γ = 0, γ0µ = 0) and in vacuum (Tab = 0), the linearized Einstein equations
reduce to the simple wave equation

∂c∂c γµν = 0, (µ, ν = 1, 2, 3). (4.4.37)

We look for plane-wave solutions of the form

γµν(x) = ℜ
{
Aµν e

ikaxa
}
, (4.2)
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where Aµν is a constant polarization tensor and ka is a constant wavevector. It is sufficient to work
with the complex field

γ̃µν(x) = Aµνe
ikaxa

,

since the real part may be taken at the end.

First derivative.

∂cγ̃µν = ∂c

(
Aµνe

ikaxa
)

= Aµν ∂ce
ikaxa = ikcAµνe

ikaxa
. (4.3)

Second derivative. Applying ∂c = ηcd∂d gives

∂c∂cγ̃µν = ηcd∂d

(
ikcAµνe

ikaxa
)

= i ηcdkcAµν∂de
ikaxa (4.4)

= i ηcdkcAµν

(
ikde

ikaxa
)

(4.5)

= − ηcdkckdAµνe
ikaxa (4.6)

= − kak
aAµνe

ikbxb
. (4.7)

Substituting into the wave equation. Equation (4.4.37) requires

∂c∂cγ̃µν = 0,

so the above expression implies
− kak

aAµνe
ikbxb = 0.

For a nontrivial solution (Aµν ̸= 0), this must hold for all x, and therefore

kak
a = 0. (4.4.38)

Thus the wavevector is null, showing that linearized gravitational perturbations in vacuum propagate
at the speed of light and behave like a massless spin-2 field.

Gauge conditions. In radiation gauge we impose

γ = 0, γ0µ = 0,

and we now determine what these conditions imply for the polarization tensor of a plane-wave
solution.

We seek plane-wave solutions of the form

γµν(x) = Aµν e
ikaxa

,

where Aµν is a constant symmetric tensor and ka is a constant wavevector. Substituting this ansatz
into the gauge conditions produces purely algebraic constraints on Aµν .
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(1) Tracelessness. The condition γ = γµ
µ = 0 becomes

γµ
µ = Aµ

µ e
ik·x = 0.

Since the exponential never vanishes, we obtain

Aµ
µ = 0. (4.4.37a)

(2) Vanishing time–space components. The radiation gauge requires

γ0µ = 0.

Substituting the plane-wave form gives

γ0µ = A0µ e
ik·x = 0,

and hence
A0µ = 0. (4.4.37b)

Thus the polarization tensor has no components with a time index.

(3) Lorenz gauge transversality. The Lorenz gauge condition,

∂aγ̄ab = 0,

reduces for a plane wave to the algebraic condition

kaAab = 0. (4.4.37c)

We now apply this to determine which spatial components of Aµν are allowed.

Choose coordinates so that the wave propagates in the +z direction. Then a null wavevector has
the form

kµ = (ω, 0, 0, ω)

with kak
a = 0. Applying the transversality condition gives

kµAµν = ω (A0ν +A3ν) = 0.

Using (4.4.37b), A0ν = 0, this reduces to

A3ν = 0. (4.4.37d)

Resulting form of the polarization tensor. The conditions (4.4.37a)–(4.4.37d) imply that

A0µ = 0, A3µ = 0,

so the only nonzero components of Aµν lie in the x–y plane:

A11, A22, A12 = A21.
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The tracelessness condition A1
1 +A2

2 = 0 then leaves exactly two independent components. These
correspond to the two physical polarization states of a gravitational wave.

In addition, the residual Lorenz gauge condition,

∂aγ̄ab = 0, (4.4.25)

reduces in vacuum to the transversality condition

kµAµν = 0. (4.4.40)

Counting independent components. The symmetric 3× 3 tensor Aµν initially has six inde-
pendent components. The transversality condition (4.4.40) imposes three independent constraints.
The traceless condition (4.4.39) removes one further degree of freedom. Hence

6 − 3 − 1 = 2

independent degrees of freedom remain.

These two degrees of freedom correspond to the two physical polarization states of the gravitational
field.

Explicit polarization tensors. Consider a wave propagating in the +z-direction, so that

ka = ω(1, 0, 0, 1).

The transversality condition kµAµν = 0 forces all components with a z index to vanish. The only
nonzero components are the spatial “transverse” ones in the x and y directions.

A convenient basis of polarization tensors is

ε(+)
µν =

(
1 0
0 −1

)
, ε(×)

µν =
(

0 1
1 0

)
, (4.4.41)

with indices restricted to µ, ν = x, y.

These are the familiar “plus” and “cross” polarization states of a gravitational wave.

From the polarization tensor to the TT metric perturbation. The analysis above shows
that, for a plane-wave solution of the linearized Einstein equation in radiation gauge, the metric
perturbation takes the form

γµν(x) = Aµν e
ik·x,

with the polarization tensor Aµν satisfying

A0µ = 0, A3µ = 0, Aµ
µ = 0.

These are precisely the transverse and traceless conditions defining the TT gauge. Consequently,
the spatial components of the plane-wave perturbation are

γij(t, z) = Aij e
iω(t−z), i, j = 1, 2,
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and we may identify

γTT
ij (t, z) ≡ γij(t, z) = Aij e

iω(t−z). (TT-identification)

Thus the algebraic object Aij obtained from the gauge conditions is precisely the physical TT metric
perturbation that enters observable quantities such as the Riemann tensor and the geodesic deviation
equation. Only after this identification does the curvature tensor acquire nonzero, measurable
components, leading to the tidal accelerations characteristic of gravitational waves.

Transverse–Traceless (TT) Gauge.
In the plane-wave analysis, a gravitational wave solution takes the form

γij(x) = Aij e
ik·x,

where Aij is a constant symmetric polarization tensor. After imposing the full set of radiation–
gauge conditions

γ0µ = 0, γ = 0, kiAij = 0,

the tensor Aij satisfies the same transverse and traceless constraints. Thus the physical metric
perturbation is encoded entirely in the transverse–traceless spatial tensor

γTT
ij (x) = Aij e

ik·x.

In practical applications—such as computing tidal forces or interferometer strain—the spatial
dependence is irrelevant and the oscillatory factor is absorbed into the time-dependent amplitudes
h+(t) and h×(t). The remaining tensor Aij represents the polarization pattern of the wave. For
a wave propagating in the +z–direction, the TT tensor takes the standard form

γTT
ij (t) =


h+(t) h×(t) 0
h×(t) −h+(t) 0

0 0 0

 ,
where h+(t) and h×(t) encode the observable oscillations of the two polarization states of a
massless spin-2 field.
In TT gauge the entire physical content of a gravitational wave—its tidal stretching and squeezing
of freely falling test masses—is contained in this 3× 3 spatial tensor.

4.4.3.4 Effect on Free Test Particles: Geodesic Deviation

To see the physical effect of gravitational waves, we study the relative motion of nearby freely falling
test particles. Their separation is governed by the geodesic deviation equation,

D2Xa

dτ2 = −Ra
bcd u

bXcud,

where ua is the four-velocity of the reference geodesic and Xa is the separation vector to a neighboring
geodesic.
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In the weak-field, slow-motion limit appropriate for gravitational-wave detectors, we may choose
coordinates such that, in the absence of the wave, the test particles are at rest:

ua ≈ ta = (1, 0, 0, 0), Xa = (0, Xi),

and proper time τ can be identified with coordinate time t.

With these choices, the spatial components of geodesic deviation reduce to

d2Xi

dt2
= −Ri

0j0X
j . (4.4.42)

Riemann tensor in the radiation gauge. In linearized gravity, the Riemann tensor to first
order in γab is

R
(1)
abcd = 1

2
(
∂c∂bγad + ∂d∂aγbc − ∂c∂aγbd − ∂d∂bγac

)
.

In the radiation gauge for a wave in vacuum we have

γ00 = 0, γ0i = 0, γij = γTT
ij (t, z),

with γTT
ij transverse and traceless.

Taking a = 0, b = i, c = 0, d = j, we obtain

R
(1)
0i0j = 1

2
(
∂0∂iγ0j + ∂j∂0γ0i − ∂0∂0γij − ∂j∂iγ00

)
= −1

2 ∂
2
0γij ,

since γ00 = γ0i = 0 in radiation gauge. Thus

R
(1)
0i0j = −1

2 γ̈ij , (4.4.43)

where dots denote derivatives with respect to t.

Raising the first index with ηik, we have

Ri
0j0 = ηikRk0j0 = −1

2 γ̈
i
j .

Relative acceleration of test particles. Substituting this into the geodesic deviation equation
(4.4.42) gives

d2Xi

dt2
= 1

2 γ̈
i
j X

j . (4.4.44)

Thus a passing gravitational wave produces a time-dependent tidal acceleration on the separation
vector Xi between neighboring freely falling particles. In particular, for a wave propagating in the
+z-direction and a ring of test particles lying in the x–y plane, the “plus” and “cross” polarization
states γTT

ij produce the characteristic alternating stretching and squeezing patterns associated with
gravitational waves.
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4.4.3.5 Response of an Interferometric Detector

To connect the geodesic deviation result with real gravitational-wave experiments, consider a simple
model of an interferometric detector. Two test masses are placed at fixed coordinate positions along
orthogonal spatial arms (e.g. the x-arm and the y-arm). In the absence of gravitational waves, the
proper lengths of these arms remain constant. A passing gravitational wave influences the proper
distance between freely falling test masses.

Assume a plane gravitational wave traveling in the +z-direction, written in TT gauge as

γTT
ij (t− z) = h+(t− z) ε(+)

ij + h×(t− z) ε(×)
ij ,

with polarization tensors

ε
(+)
ij =

1 0 0
0 −1 0
0 0 0

 , ε
(×)
ij =

0 1 0
1 0 0
0 0 0

 .

Because the TT gauge is constructed so that freely falling detectors remain at constant spatial
coordinates, the coordinate positions of the end masses do not change. Instead, the proper distance
between them changes.

For a mass separated by a vector Xi from the beam splitter, the geodesic deviation equation gives

d2Xi

dt2
= 1

2 γ̈
TT i

j X
j .

Integrating twice (and assuming the wave amplitude is small and the initial velocity is zero) yields

δXi(t) = 1
2 γ

TT i
j(t)Xj

0 ,

where Xj
0 is the unperturbed separation.

Effect on detector arms. Take an interferometer with arms of coordinate lengths

Lx = L, Ly = L,

lying along the x- and y-axes. The proper length of the x-arm becomes

Lx(t) = L+ δLx(t) = L+ 1
2 γ

TT
xx (t)L,

and similarly for the y-arm.

For a +-polarized wave,
γTT

xx = h+, γTT
yy = −h+,

so the arm lengths change in opposite directions:

δLx

L
= 1

2 h+,
δLy

L
= −1

2 h+.
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Detected strain. Interferometers measure the difference in fractional arm-length changes:

h(t) = δLx

L
− δLy

L
= h+(t).

Thus the measurable strain of a detector is directly the amplitude of the transverse–traceless metric
perturbation:

h(t) = γTT
xx (t)− γTT

yy (t).

This linear relationship between detector response and wave amplitude is the foundation for
gravitational-wave interferometry, as implemented in LIGO, VIRGO, KAGRA, and similar observa-
tories.

4.4.4 Gravitational Radiation (Sourced)

In the previous sections we analyzed vacuum solutions of the linearized Einstein equation, □γ̄ab = 0,
and showed that they describe freely propagating gravitational waves in transverse–traceless form.
We now turn to the more general case in which matter is present. In linearized gravity, the sourced
field equation

□γ̄ab = −16πTab

is a set of inhomogeneous wave equations, entirely analogous to Maxwell’s equation for the elec-
tromagnetic four-potential. The physically relevant solution is the retarded one, which expresses
the metric perturbation at a point in terms of the past behavior of the stress–energy tensor. This
retarded integral provides the bridge between matter dynamics in the near zone and gravitational
radiation observed in the far zone.

Retarded Green’s function. The wave equation for a scalar field ψ,

∂c∂cψ = −4πf,

admits the retarded solution

ψ(t, x⃗) =
∫
d3x′ f

(
tret, x⃗

′)
|x⃗− x⃗′|

, tret = t− |x⃗− x⃗′|.

This follows from the retarded Green’s function in flat spacetime,

Gret(x, x′) =
δ
(
t′ − t+ |x⃗− x⃗′|

)
|x⃗− x⃗′|

.

Since each component γ̄ab satisfies the same wave equation (4.4.12) with source −16πTab, we may
write the solution by direct analogy:

γ̄ab(t, x⃗) = 4
∫
d3x′ Tab

(
tret, x⃗

′)
|x⃗− x⃗′|

, tret = t− |x⃗− x⃗′|. (4.4.45)

This is the retarded solution of the linearized Einstein equation: the metric perturbation at (t, x⃗) is
determined by the past behavior of the stress–energy tensor evaluated on the past light cone of that
point.
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Fourier transform. To obtain Wald’s Eq. 4.4.44, we Fourier transform the retarded solution
Eq. 4.4.45 in time only. Insert Eq. 4.4.45 into the Fourier transform:

ˆ̄γµν(ω, x⃗) = 4√
2π

∫
d3x′ 1
|x⃗− x⃗′|

∫ ∞

−∞
dt Tµν(t− |x⃗− x⃗′|, x⃗′) eiωt.

Make the substitution u = t− |x⃗− x⃗′|, so t = u+ |x⃗− x⃗′| and dt = du. Then∫
dt Tµν(t− |x⃗− x⃗′|, x⃗′) eiωt = e iω|x⃗−x⃗′|

∫ ∞

−∞
Tµν(u, x⃗′) eiωudu.

Using the Fourier transform of the stress–energy tensor,

T̂µν(ω, x⃗′) = 1√
2π

∫ ∞

−∞
Tµν(u, x⃗′) eiωudu,

the inner integral becomes ∫
Tµν(u, x⃗′)eiωudu =

√
2π T̂µν(ω, x⃗′).

Substituting back and cancelling the factors of
√

2π, we obtain Wald’s eq. (4.4.44):

ˆ̄γµν(ω, x⃗) = 4
∫
d3x′ T̂µν(ω, x⃗′)

|x⃗− x⃗′|
e iω|x⃗−x⃗′|. (4.4.44)

Gauge relation for the time-space components. Wald uses the linearized conservation law
∂aTab = 0 together with the Lorenz gauge condition to deduce his key relation:

−iω ˆ̄γ0µ =
3∑

ν=1

∂

∂xν
ˆ̄γνµ. (4.4.45)

Thus the spatial derivatives of the γ̄ij determine γ̄0i, and only the spatial–spatial components must
be solved explicitly.

Slow-Motion Sources and the Quadrupole Approximation

We now evaluate the retarded solution (4.4.42) in the regime of slow-moving, spatially compact
sources,

|v⃗| ≪ 1, source size L≪ radiation distance R.

Far-zone expansion of the spatial components. In the radiation zone (R≫ L) the phase
factor eiω|x⃗−x⃗′| can be approximated by

eiω|x⃗−x⃗′| ≈ eiωR,
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and pulled out of the integral.

We now fill in the steps leading to Wald’s relation∫
T̂µνd3x = −ω

2

2

∫
T̂ 00 xµxν d3x, (4.4.46)

showing how it follows from stress–energy conservation and integration by parts.

Step 1: Start from local conservation. The local conservation law is

∂aT
ab = 0 ⇒ ∂tT

0b + ∂kT
kb = 0,

where Latin spatial indices k = 1, 2, 3 and b = 0, 1, 2, 3.

Step 2: First integration by parts (one time derivative).

Take b = 0 and multiply by xµxν , then integrate over space:∫
d3xxµxν(∂tT

00 + ∂kT
k0) = 0.

The first term gives ∫
d3xxµxν ∂tT

00 = d

dt

(∫
d3xxµxνT 00

)
,

since xµxν are time-independent.

For the second term, integrate by parts in space:∫
d3xxµxν∂kT

k0 =
∫
d3x ∂k

(
xµxνT k0)− ∫ d3x

(
∂kx

µxν)T k0.

The divergence term is a surface integral at infinity and vanishes if T k0 has compact support or
decays fast enough. Using ∂k(xµxν) = δµ

kx
ν + δν

kx
µ, we obtain∫

d3xxµxν∂kT
k0 = −

∫
d3x

(
xνTµ0 + xµT ν0).

The conservation law therefore gives

d

dt

(∫
d3xxµxνT 00

)
=
∫
d3x

(
xνTµ0 + xµT ν0). (4.4.46∗)

Step 3: Second integration by parts (two time derivatives).

Differentiate Eq. 4.4.46∗ with respect to time:

d2

dt2

(∫
d3xxµxνT 00

)
=
∫
d3x

(
xν∂tT

µ0 + xµ∂tT
ν0).
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Now use conservation again, this time with b = µ and b = ν:

∂tT
µ0 = −∂kT

kµ, ∂tT
ν0 = −∂kT

kν .

Thus
d2

dt2

(∫
d3xxµxνT 00

)
= −

∫
d3x

(
xν∂kT

kµ + xµ∂kT
kν).

Integrate by parts once more in space. For the first term,∫
d3xxν∂kT

kµ =
∫
d3x ∂k(xνT kµ)−

∫
d3x (∂kx

ν)T kµ = −
∫
d3xT νµ,

again dropping the surface term. Similarly,∫
d3xxµ∂kT

kν = −
∫
d3xTµν .

Therefore
d2

dt2

(∫
d3xxµxνT 00

)
= 2

∫
d3xTµν .

Equivalently, ∫
d3xTµν(t, x⃗) = 1

2
d2

dt2

(∫
d3xxµxνT 00(t, x⃗)

)
. (4.4.46†)

Step 4: Go to Fourier space.

Define the temporal Fourier transform (Wald’s eq. (4.4.43))

T̂ ab(ω, x⃗) = 1√
2π

∫ ∞

−∞
T ab(t, x⃗) eiωt dt.

Fourier transforming Eq. 4.4.46† with respect to t, and using

d2

dt2
−→ −ω2 in Fourier space,

we obtain ∫
d3x T̂µν(ω, x⃗) = −ω

2

2

∫
d3xxµxν T̂ 00(ω, x⃗),

which is precisely Wald’s eq. (4.4.46):∫
T̂µνd3x = −ω

2

2

∫
T̂ 00 xµxν d3x. (4.4.46)

Thus (4.4.46) is just the Fourier-space version of the time-domain statement that the spatial
components of the stress–energy tensor are determined by the second time derivative of the mass
quadrupole moment

∫
T 00xµxνd3x.
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Far-zone result for the Fourier-space field. Substituting (4.4.46) into (4.4.44), Wald arrives
at the far-zone field

ˆ̄γµν(ω, x⃗) = − 2ω2

3R eiωR q̂µν(ω), (µ, ν = 1, 2, 3), (4.4.47)

where q̂µν is the Fourier transform of the mass quadrupole moment tensor.

The quadrupole moment. Wald defines (eq. 4.4.48)

qµν(t) = 3
∫
T 00(t, x⃗)xµxν d

3x. (4.4.48)

Inverse Fourier transform: the time-domain waveform. Taking the inverse transform of
(4.4.47), Wald obtains the quadrupole formula for the spatial components of the metric perturbation:

γ̄µν(t, x⃗) = 2
3R

d2qµν

dt2

∣∣∣
t′= t−R

, (µ, ν = 1, 2, 3). (4.4.49)

This is Wald’s final result for slow-motion gravitational radiation: the metric perturbation is
proportional to the second time derivative of the mass quadrupole moment, evaluated at the retarded
time.

4.4.4.1 Energy Flux and Radiated Power

Although gravitational waves do not possess a true local stress–energy tensor, one may define an
effective stress–energy tensor that correctly describes the averaged energy and momentum flux
carried by weak, rapidly varying gravitational radiation. Following the standard linearized-gravity
treatment, we work exclusively with the TT part of the metric perturbation, γTT

ij .

Averaging procedure. Define the effective stress–energy tensor by

tGW
µν = 1

32π
〈
∂µγ

TT
ij ∂νγ

TT
ij

〉
, (GW.1)

where ⟨· · · ⟩ denotes an average over several wavelengths. This is a standard post-Wald extension
and introduces no new equations in Wald’s numbering.

Energy flux. For outward-propagating radiation in direction n̂,

dE

dAdt
= tGW

0i ni.

In the far zone, the TT field has the form

γTT
ij (t, r, n̂) = 1

r
Aij(t− r),
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implying
∂tγ

TT
ij = −∂rγ

TT
ij = 1

r
Ȧij(t− r).

Thus the radial flux becomes

tGW
0r = 1

32πr2

〈
Ȧij(t− r) Ȧij(t− r)

〉
. (GW.2)

Total radiated power. Integrating over a sphere of radius r gives
dE

dt
= 1

32π

∫
dΩ

〈
Ȧij(t− r) Ȧij(t− r)

〉
. (GW.3)

Relation to the quadrupole moment. Using Wald’s waveform (4.4.55),

γij(t, x⃗) = 2
R
Q̈ij(t−R),

the TT part is
γTT

ij = 2
R
Q̈TT

ij (t−R),

so the amplitude is
Aij(t) = 2 Q̈TT

ij (t), Ȧij(t) = 2
...
Q

TT
ij (t).

Substituting into (GW.3) yields
dE

dt
= 1

8π

∫
dΩ

〈 ...
Q

TT
ij

...
Q

TT
ij

〉
. (GW.4)

Using the standard angular identity∫
dΩ

...
Q

TT
ij

...
Q

TT
ij = 4π

5
...
Q ij

...
Q ij ,

we obtain the standard quadrupole power formula:
dE

dt
= −1

5
〈 ...
Q ij

...
Q ij

〉
. (GW.5)

This expression is not in Wald; it is a standard modern extension consistent with Wald’s notation
and conventions.

Orders of Magnitude and Astrophysical Sources

The quadrupole power formula,
dE

dt
= −1

5
〈 ...
Q ij

...
Q ij

〉
, (GW.5)

and the radiative waveform,
γTT

ij (t, x⃗) = 2
R
Q̈TT

ij (t−R), (4.4.57)

describe how gravitational waves depend on the dynamics of the source. We now ask how large
these effects are in realistic astrophysical systems.
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Dimensional estimate of the strain. Let a source have total mass M , characteristic size L,
and internal velocity scale v ≪ 1 (in units where c = 1). The magnitude of the mass quadrupole
moment is

Q ∼ML2,

and if the motion varies on timescale T ∼ L/v, then

Q̈ ∼ Q

T 2 ∼ML2
(
v

L

)2
∼Mv2.

At distance R in the radiation zone the strain amplitude is

h ∼ Q̈

R
∼ Mv2

R
. (GW.6)

For a Keplerian binary with separation L,

v2 ∼ M

L
,

which gives

h ∼ M2

LR
. (GW.7)

This estimate shows that strong gravitational radiation requires both large masses and small
separations — i.e., compact objects.

Scaling of the radiated power. A periodic source with characteristic frequency ω ∼ v/L has

...
Q ∼ ω3Q ∼ v3

L3 ML2 ∼M v3

L
.

Hence
...
Q ij

...
Q ij ∼M2 v

6

L2 ,

and the power radiated is
dE

dt
∼ −M2 v

6

L2 . (GW.8)

Using again v2 ∼M/L,
dE

dt
∼ −M

5

L5 .

Restoring factors of G and c, one finds

dE

dt
∼ −G

c5 M
2L4ω6 ∼ −G

4

c5
M5

L5 .

The factor G/c5 suppresses radiation from all laboratory-sized sources.
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Laboratory sources are negligible. For a system with

M ∼ 103 kg, L ∼ 1 m, v ≪ 1,

the strain at astrophysical distances is

h ∼ GMv2

c4R
≪ 10−30,

far below detectable levels.

Astrophysical sources. Consider instead a compact binary of two neutron stars or black holes
with

M ∼M⊙, L ∼ GM

c2 .

Then
v2 ∼ GM

Lc2 ∼ 1,

and at distance R ∼ 100−500 Mpc,

h ∼ GM

c2R
∼ 10−21,

the level at which modern interferometers such as LIGO and Virgo operate.

Summary. These scaling arguments show:

• gravitational waves from laboratory systems are utterly negligible,
• compact binaries are the dominant astrophysical sources,
• linearized gravity is an excellent approximation in the far zone, even for strong-field compact

objects.

Observational Confirmation: The Hulse–Taylor Binary Pulsar

The quadrupole power formula,
dE

dt
= −1

5
〈 ...
Q ij

...
Q ij

〉
, (GW.5)

predicts that a binary system steadily loses orbital energy to gravitational radiation, causing the
orbit to shrink.

A remarkable confirmation of this prediction was provided by the binary pulsar PSR B1913+16,
discovered by R. A. Hulse and J. H. Taylor.

The system. PSR B1913+16 consists of two neutron stars in an eccentric, relativistic orbit with
period

P ≈ 8 hr.
One star is a radio pulsar whose precisely timed pulses allow the orbital parameters to be monitored
with extraordinary accuracy.
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Predicted orbital decay. General relativity predicts that gravitational-wave emission causes the
orbital period to decrease at the rate

ṖGR = −192π
5

(2πG
c3

)5/3 (m1m2) (m1 +m2)−1/3

a5/3 (1− e2)7/2

(
1 + 73

24e
2 + 37

96e
4
)
, (GW.9)

a direct consequence of the quadrupole formula applied to an eccentric binary.

Observations. Long-term timing observations yield the measured decay,

Ṗobs,

and the result agrees with the general-relativistic prediction to within better than 0.5%:

Ṗobs ≈ ṖGR.

Significance. This agreement is the first experimental confirmation that gravitational waves carry
energy exactly as predicted by the linearized theory. The cumulative orbital decay — although far
too small to detect as a strain at Earth — provides a precise indirect detection of gravitational
radiation.

The discovery earned Hulse and Taylor the 1993 Nobel Prize in Physics.
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Chapter 5

Homogeneous, Isotropic, Cosmology

In Chapter 4 we developed the description of spacetime as a four-dimensional manifold equipped
with a Lorentzian metric, gab, whose dynamics are determined by Einstein’s equation,

Gab = 8πTab.

A natural question now arises: which solutions of Einstein’s equation describe the spacetime we
actually observe? In this chapter we examine the large-scale structure of our universe as implied by
general relativity under the empirical assumption that, on sufficiently large scales, the universe is
both homogeneous and isotropic.

5.1 Homogeneity and Isotropy

Note: Throughout this section we work with an idealized cosmological spacetime that is exactly
homogeneous and isotropic. These symmetry assumptions are not meant to describe local inhomo-
geneities such as stars or galaxies, but rather the large-scale structure of the universe. The existence
of isometries mapping arbitrary points on Σt therefore applies only within this idealized model.

We shall assume that the universe is isotropic, meaning that there exist no preferred directions in
space, and that sufficiently large-scale observations yield statistics independent of the direction in
which we look. Isotropy about every point then implies homogeneity: no spatial point is distinguished
from any other.

These assumptions are strongly supported by modern observations:

• On the largest observable scales, the spatial distribution of galaxies is consistent with homo-
geneity and isotropy.

• Counts of radio sources and the observed isotropy of the X-ray and γ-ray backgrounds provide
additional evidence for large-scale uniformity.

• The Cosmic Microwave Background (CMB), a nearly perfect 3 K blackbody radiation field
permeating the universe, is isotropic to extremely high precision.
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Figure 5.1: The hypersurfaces of spatial homogeneity in spacetime. By definition of homogeneity,
for each t and each p, q ∈ Σt there exists and isometry of the spacetime which takes p into q.

Even if the universe is not exactly homogeneous and isotropic, these symmetries provide an excellent
approximation on sufficiently large scales. Accordingly, throughout this chapter we shall adopt
homogeneity and isotropy as our working assumptions and explore their profound implications for
the form of the spacetime metric and the dynamics of cosmic evolution.

Homogeneity

Before introducing the formal definition of homogeneity, it is useful to recall the notion of a
hypersurface in spacetime. A hypersurface Σ is a smooth three-dimensional submanifold of the
four-dimensional spacetime manifold. Intuitively, one may think of a hypersurface as representing
an “instant of time” or a “slice” of the spacetime, although no preferred foliation is assumed apriori.
A foliation is a partition of a manifold into submanifolds. A family of hypersurfaces {Σt}, smoothly
labeled by a real parameter t, provides a foliation of spacetime in which each event lies on exactly
one such slice. When the hypersurfaces are spacelike, each Σt may be viewed as the “space” of the
universe at parameter time t.

In a homogeneous cosmological model, it is precisely these spacelike hypersurfaces that exhibit the
symmetry: for any two points p and q lying on the same hypersurface Σt, there exists an isometry
of the induced three-metric on Σt that maps p to q. Or in other words, there exists a smooth
diffeomorphism, ϕ : Σt → Σt, such that ϕ(p) = q where ϕ∗hab = hab (geometry preservation). To
break it down further, take a point p ∈ Σt – around p, the metric hab defines distances, angles,
curvature, volumes, and any other local geometric facts. Homogeneity says, there exists another
point q ∈ Σt such that everything geometrically true in a neighborhood of p is also true in a
neighborhood of q. The isometry is simply the formal object that encodes this equivalence.

Fig. 5.1 illustrates a one-parameter family of such slices, together with the motion of points under
the action of spatial isometries. An isometry is a symmetry of the spacetime metric: a smooth map
that moves points around without changing any physical distances or the form of the metric. . Thus
the concept of a hypersurface provides the geometric setting in which homogeneity is defined: each
“spatial” slice of the universe looks the same at every point.
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Isotropy

Isotropy in cosmology means that at each point, space looks the same in every direction. But we
are in spacetime, not Euclidean space, so “directions” must be defined carefully.

To describe this, we first need a congruence of observers. But what is meant by congruence? Imagine
you want to assign an observer to every event in spacetime – one who represents “the cosmic rest
frame” (the frame in which the universe looks isotropic). You cannot use just one observer for this,
because a single observer’s worldline passes through only one event at each moment of their own
time.

So instead, you need a whole family of observers, arranged so that:

• Their worldlines never intersect,
• Every event, p, in spacetime lies on exactly one of them,
• Together, they fill the entire spacetime manifold.

This family is called a congruence. Equivalently, it is the integral curves of a smooth, everywhere-
defined timelike vector field ua(x).

Once we have such a congruence, the tangent vector ua(p) to the worldline passing through an event
p defines the “time direction” of the isotropic observer at p. Here, “time direction” refers to the
direction in the tangent space along which the observer’s proper time increases. All other possible
directions a curve may take through p form the tangent space TpM . Among these, the directions
that are spatial for the observer are those orthogonal to ua, that is,

Vp = { sa ∈ TpM | gabu
asb = 0 }.

This 3-dimensional subspace Vp contains all the possible spatial directions the observer at p can point
toward. Here, the term “point” refers to selecting a spatial direction in the observer’s instantaneous
rest space, not to moving in that direction; spatial directions in Vp describe how the observer may
orient measurements or aim instruments at a fixed proper time, rather than possible trajectories of
motion.

With these notions in place, we can now give a precise, coordinate-free statement of isotropy.
Consider Fig. 5.2. A spacetime is said to be spatially isotropic at p if, for any two unit vectors
sa

1, s
a
2 ∈ Vp, there exists an isometry of the spacetime metric gab that satisfies the following three

conditions:

1. It leaves the event p fixed,
2. It leaves the observer’s velocity ua at p fixed, and
3. It rotates sa

1 into sa
2.

The first two conditions ensure that we are considering a purely spatial symmetry at the event p. The
third condition expresses the essential content of isotropy: no spatial direction at p is geometrically
distinguished from any other. If such rotations exist for all pairs of spatial directions in Vp, then the
observer at p sees no preferred direction in the universe.

Thus, isotropy at a point means that the local spatial geometry around the cosmic observer admits
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Figure 5.2: The world lines of isotropic observers in spacetime. By definition of isotropy, for any
two vectors sa

1, s
a
2 at p which are orthogonal to ua, there exists an isometry of the spacetime which

leaves p fixed and rotates sa
1 into sa

2.

the full rotation group as a symmetry. In particular, one cannot construct any geometrically
preferred spatial vector orthogonal to ua. This is the precise general-relativistic formulation of the
intuitive idea that “space looks the same in every direction.”

Note: Rotations are singled out because they are the only isometries that fix the event p and the
time direction ua(p) while mapping one spatial direction in Vp to another; all other isometries either
shift the point p (as in translations) or alter the time direction (as in boosts). Thus rotational
symmetry of the spatial subspace Vp is precisely the condition for isotropy at p.

5.1.0.1 Spatial Curvature Implied by Homogeneity and Isotropy

Wald claims

It is not difficult to see that in the case of homogeneous and isotropic spacetime,
the surfaces Σt of homogeneity must be orthogonal to the tangents, ua, to the world
lines of the isotropic observers. If not, then assuming that the isotropic observers and
the family of homogeneous surfaces Σt are unique, the failure of the tangent subspace
orthogonal to ua to coincide with the tangent space of Σt would enable us to construct
a geometrically preferred spatial vector, in violation of isotropy.

Oh yeah. Totally not difficult. I for one saw it instantly - lets go through it anyway.

Given that the hypersurfaces Σt of homogeneity are orthogonal to the timelike congruence ua, we
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define the induced spatial metric by

hab(t) = gab + uaub.

Here uaub is the tensor product of the covector ua with itself; it encodes the distinguished timelike
direction defined by the comoving observers. The combination hab = gab + uaub therefore removes
the timelike component of the spacetime metric and yields a positive-definite metric on vectors
orthogonal to ua.

This tensor projects all vectors into the subspace orthogonal to ua and therefore measures spatial
distances within Σt, i.e. the geometry seen by comoving observers. Homogeneity and isotropy imply
that hab(t) cannot depend on spatial position, and that each Σt must be a maximally symmetric
three–manifold. We now derive this result explicitly by examining the intrinsic curvature of (Σt, hab).

Isotropy at a Point. The goal of this section is to show that isotropy at a single point forces
the spatial curvature to be identical in all directions. Equivalently, the Riemann tensor at a point
cannot distinguish one spatial direction from another.

We consider the Riemann tensor (3)Rabcd associated with the induced spatial metric hab. By
“associated” we mean that this is not the spacetime Riemann tensor, but rather the intrinsic
Riemann tensor of the spatial slice Σt, encoding how space itself is curved at fixed cosmic time.
Thus, from this point onward we are doing purely three-dimensional Riemannian geometry. This
restriction is possible because hab is the projection metric onto directions orthogonal to the timelike
congruence ua, and hence contains no timelike components (as indicated by the superscript (3)).

The Riemann tensor has four indices. By raising two of them with hab, we may reinterpret it as a
map

(3)Rab
cd : (antisymmetric index pair ab) −→ (antisymmetric index pair cd).

In other words, the Riemann tensor acts naturally on two-forms, i.e. rank–(0, 2) antisymmetric
tensors. This reflects the geometric fact that curvature is associated with two-dimensional planes
rather than individual directions: sectional curvature measures the curvature of a two-plane.

Rather than introducing the abstract operator notation L : W →W , we will write Wald’s argument
explicitly in index notation, which makes transparent how isotropy constrains the intrinsic curvature
of the spatial slices.

Let Fab denote an antisymmetric rank–(0, 2) tensor at a point p ∈ Σt, satisfying

Fab = −Fba.

In three dimensions, the space of such tensors has dimension three. Geometrically, each two-form
corresponds to an oriented two-dimensional plane through the point p.

The action of the Riemann tensor on a two-form is given explicitly by

F̃ab = (3)Rab
cdFcd.
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Thus, given any antisymmetric tensor Fcd, contraction with the Riemann tensor produces another
antisymmetric tensor F̃ab. This explicit index expression is all that is meant by viewing the Riemann
tensor as a linear map on the space of two-forms; no additional structure is being introduced.

Using the spatial metric hab, there is a natural inner product on two-forms, and the algebraic
symmetries of the Riemann tensor,

(3)Rabcd = (3)Rcdab,
(3)Rabcd = −(3)Rbacd,

imply that this action is self-adjoint with respect to that inner product. Consequently, the curvature
operator admits an orthonormal basis of eigen–two–forms at each point.

Aside: Self-adjointness of the curvature operator and its consequences.
At a fixed point p ∈ Σt, consider the vector space of two-forms W = Λ2(T ∗

p Σt) equipped
with the inner product induced by the spatial metric hab,

⟨F,G⟩ = 1
2FabGcd h

achbd.

Define the action of the spatial Riemann tensor on two-forms by

(RF )ab = (3)Rab
cdFcd.

The algebraic symmetries of the Riemann tensor imply that for all two-forms Fab and
Gab,

⟨F,RG⟩ = ⟨RF,G⟩.

This equality is precisely the statement that R is self-adjoint with respect to the inner
product on W . In this context, the adjoint of an operator is defined by the requirement
that

⟨F,RG⟩ = ⟨R†F,G⟩ for all F,G ∈W,

and self-adjointness means R† = R.
Since W is a finite-dimensional real inner-product space, standard linear algebra guar-
antees that R admits an orthonormal basis of eigen–two–forms. That is, there exist
two-forms F (i)

ab and real eigenvalues λi such that

(3)Rab
cdF

(i)
cd = λiF

(i)
ab ,

with the F (i)
ab orthonormal under ⟨·, ·⟩.

Each such eigen–two–form corresponds geometrically to an oriented spatial plane through
p, and the associated eigenvalue λi gives the sectional curvature of that plane. If the
eigenvalues were not all equal, the corresponding eigen–two–forms would single out
geometrically preferred planes and hence preferred spatial directions, violating isotropy.

As shown above, isotropy at p therefore requires that the curvature act identically on all two-forms,
so that

(3)Rab
cdFcd = K Fab for all antisymmetric Fab,
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for some scalar K. Since this must hold for all two-forms, the Riemann tensor must take the form
(3)Rab

cd = K δc
[aδ

d
b].

Lowering indices with hab yields the constant-curvature expression
(3)Rabcd = K hc[ahb]d. (5.1)

Constancy of the Curvature. Homogeneity further requires that K be the same at all points
of Σt. Substituting (5.1) into the three-dimensional Bianchi identity gives

0 = D[e
(3)Rab]cd = (D[eK)h|c|ahb]d,

which can hold only if DeK = 0. Thus K is constant on each spatial slice.

Conclusion. Each hypersurface Σt is therefore a three-dimensional manifold of constant cur-
vature K, i.e. a maximally symmetric Riemannian space. The only allowed spatial geometries
are

K > 0 : a 3-sphere, K = 0 : R3, K < 0 : hyperbolic 3-space.
Any time dependence of the spatial metric can appear only as an overall scale factor, so the most
general induced metric is

hab(t) = a2(t) h̃ab,

where h̃ab is the metric of a fixed maximally symmetric three-manifold.

A maximally symmetric three-manifold is a Riemannian space whose metric admits the maximum
number (six) of independent Killing vector fields, and is equivalently characterized by homogeneity,
isotropy, and constant curvature.

Note 5.1. Up to this point, no use has been made of Einstein’s field equations. The results obtained
follow solely from differential geometry together with the assumptions of homogeneity and isotropy.
These symmetry requirements fix the spatial geometry of Σt and restrict the spacetime metric to
the FRW form, leaving only the scale factor a(t) undetermined. The dynamical evolution of a(t)
enters only upon imposing Einstein’s equations.

Classification of Constant-Curvature Spatial Geometries Having shown that homogeneity
and isotropy force each spatial hypersurface Σt to have constant curvature, we now classify the
possible spatial geometries by enumerating the three-dimensional spaces that realize each value of
the curvature parameter K.

Appendix: Einstein Index Notation Cheat Sheet

Einstein Index Notation Cheat Sheet
(Optimized for Linearized Gravity and Wald Ch. 4.4)
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1. Index Placement and Summation

• Contravariant (upper index): V a

• Covariant (lower index): Wb

• Einstein summation: a repeated index (one up, one down) is summed:

V aWa =
3∑

a=0
V aWa.

• Unrepeated indices are never summed.

2. Minkowski Metric and Raising/Lowering

Wald uses signature (−+ ++):

ηab = diag(−1, 1, 1, 1), ηab = diag(−1, 1, 1, 1).

Lowering a vector:
Va = ηabV

b.

Raising a covector:
W a = ηabWb.

Special cases:
V0 = −V 0, Vi = V i (i = 1, 2, 3).

3. Contractions

General contractions:
T a

a = ηabTba, TabV
aW b, Ra

0a0.

Contraction always means: raise then sum (or sum directly if mixed).

4. Trace Reversal (Wald Eq. 4.4.6)

Trace:
γ = γa

a = ηabγab.

Trace-reversed metric perturbation:

γ̄ab = γab −
1
2ηabγ.
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Useful identities:
γ̄ = −γ, (γ = 0) ⇒ γ̄ab = γab.

5. Gauge Transformations in Linearized Gravity

Basic transformation:
γ′

ab = γab + ∂aξb + ∂bξa.

Trace-reversed form:
γ̄′

ab = γ̄ab + ∂aξb + ∂bξa − ηab∂
cξc.

Lorenz gauge:
∂aγ̄ab = 0.

Under a gauge transformation:
∂aγ̄′

ab = ∂aγ̄ab + □ξb.

Residual gauge freedom:
□ξb = 0.

6. Metric as a Bilinear Map (Geometric Meaning)

Lower a vector:
Vb = gbaV

a (‘flat’ operator).

Raise a covector:
αa = gabαb (‘sharp’ operator).

Used in:

• switching between γab, γab, γ̄a
b

• manipulating stress–energy components
• Riemann tensor computations

7. Linearized Riemann Tensor (Used in Geodesic Deviation)

R
(1)
abcd = 1

2
(
∂c∂bγad + ∂d∂aγbc − ∂c∂aγbd − ∂d∂bγac

)
.
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Raise first index:
Ra

bcd = ηaeRebcd.

Used to show:
Ri

0j0 = −1
2 γ̈

TT i
j .

8. Plane-Wave Polarizations

Plane wave:
γµν = Aµνe

ikaxa
.

Null condition:
kak

a = 0.

Lorenz transversality:
kaAab = 0.

Radiation gauge:
A0µ = 0, A3µ = 0.

Tracelessness:
Aµ

µ = 0.

Remaining components:

A11, A22, A12 = A21, A11 +A22 = 0.

These form the + and × polarization tensors.

9. Stress–Energy Tensor Manipulations

Lower two indices:
Tab = gacgbdT

cd.

Mixed tensor:
T a

b = gacTcb.

Conservation:
∂aT

ab = 0 ⇒ ∂tT
0b = −∂iT

ib.

Used in deriving Wald’s equation (4.4.46).
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10. Summary Table

Operation Formula Used In
Trace γ = ηabγab Radiation gauge
Trace reverse γ̄ab = γab − 1

2ηabγ Lorenz gauge form
Raise index V a = ηabVb Riemann, TT waves
Lower index Wa = ηabW

b Stress–energy
Divergence ∂aT

ab = 0 Quadrupole derivation
TT conditions Aµ

µ = 0, kµAµν = 0 Polarization
Geodesic deviation Ri

0j0 = −1
2 γ̈

i
j Detector physics

This appendix summarizes the conventions and index operations used throughout the gravitational
radiation analysis in linearized gravity.
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