
Forces and Newton’s Laws of Motion Chapter Four



Introduction • In the previous chapters, we explored how objects move —

how to describe their motion using position, velocity, and 

acceleration. Now, we ask a deeper question: What causes 

motion?

• Introduce Newton’s Three Laws of Motion, the foundation 

of classical mechanics.

• Explore force as a vector — including how to add and 

resolve forces in 2D.

• Analyze forces like tension, normal force, and friction, and 

how they govern real-world systems.

• Examine both equilibrium (net force zero) and non-

equilibrium (net force ≠ 0) situations using Newton’s 

Second Law.



Isaac Newton

Formulated the Three 
Laws of Motion — the 
foundation of classical 

mechanics

Discovered the 
Universal Law of 

Gravitation — explaining 
the motion of the planets 

and moons

Invented Calculus
(independently of Leibniz) 
to solve the mathematics 

of motion and change

Unified terrestrial and 
celestial mechanics —
showing that the same 
physics governs apples 

and planets

Developed the first 
reflecting telescope —
advancing observational 

astronomy

Wrote Philosophiæ 
Naturalis Principia 

Mathematica (1687) —
one of the most important 

scientific books ever 
published

Analyzed light and color
— through experiments 
with prisms, laying the 

groundwork for modern 
optics

Master of the Royal Mint
— helped reform the 
English currency and 

combat counterfeiting

“If I have seen further, it is by standing 
on the shoulders of giants.”

— Isaac Newton



Class Activity:  What is 
Mass?
Let’s see what our shared intuition tells us. Before we define 

anything, what is mass to you? Think physically, personally, 

weirdly — whatever comes to mind.



Class Activity:  What is 
Force?
Let’s see what our shared intuition tells us. We talk about 

force all the time. Let’s find out what we really think it means.



Newton’s First Law of Motion
The Law of Inertia:  Consider an object that has no forces acting on it.  If it is at rest, it will remain at rest. If it is 
in moving, it will continue to move in a straight line at a constant speed.

 It Defines Inertial Frames
• This law isn’t just about motion; it sets 

the stage for all Newtonian mechanics.
• It implicitly defines what we mean by a 

non-accelerating reference frame — an 
inertial frame is one in which this law 
holds.

• Without it, Newton’s Second Law has no 
grounding.

• If a body appears to accelerate with no 
force, you’re not in an inertial reference 
frame.

 It Rejected Aristotelian Physics
• Before Newton, people believed constant force 

was needed to sustain motion.
• Newton: force causes a change in motion, not 

motion itself.
• This insight required a conceptual revolution — 

that motion is natural and needs no cause 
unless it changes.

 It Introduces Force by Negation
• The law tells us what happens in the absence 

of a net force — this makes it a baseline.
• All other forces are deviations from this state. In 

other words, forces are only meaningful in 
terms of their ability to alter this default 
behavior.

"Lex I. Corpus omne perseverare in statu suo 
quiescendi vel movendi uniformiter in directum, nisi 
quatenus a viribus impressis cogitur statum illum 
mutare."



Team Activity: Concept Check 4.1
A passenger is sitting in a car at a red light. When the 

light turns green, the driver steps on the gas and the car 

rapidly accelerates forward. The passenger feels like 

they are being pushed backward into their seat.

Which of the following best explains this sensation?

a) A force is pushing the passenger backward.

b) The car accelerates forward, but the passenger’s 

body resists the change in motion due to inertia.

c) The seat exerts a backward force on the passenger.

d) The passenger was at rest and remains at rest 

because of a gravitational force.

The passenger was at rest. 
The car accelerated forward. 

The passenger resisted 
acceleration — that’s inertia.



What do Forces Do? 1/4

A quick experiment:

• Use your fingers to stretch a rubber band  to a specific 
length – say 10 cm, measured with a ruler.  Call this 
the “standard length”.

• You feel your fingers pull toward one another – due to a 
force exerted by the rubber band.

• Call this force, the standard force, Ԧ𝐹.
• What if we use 2 identical rubber bands?  What will the 

standard force be? 3 rubber bands?

• 2 rubber bands = 2 Ԧ𝐹

• 3 rubber bands = 3 Ԧ𝐹

• We conclude that N rubber bands = 𝑁 Ԧ𝐹



What do Forces 
Do? 2/4

• Place a 1kg block on a frictionless surface.

• Attach a rubber band to the block and stretch the band to standard 
length while holding the block.

• Release the block. What happens?

• The block experiences the same force that your finger did.

• Repeat, but this time continue to pull the rubber band to maintain a 
constant stretch – this means that your hand will have to always move at 
the same velocity of the block.

• If we took measurements of velocity and acceleration at each instant of 
time at plotted the results on a v vs. t and a vs. t plot



What do Forces Do? 3/4
• We found in our first experiment, that 1 rubber band 

yields and acceleration with magnitude 𝑎1.

• That is a coordinate, (𝐹, 𝑎1) where 𝐹 is the magnitude 
of our standard force that we defined earlier.

• Let's repeat the experiment but with 2 rubber bands 
rather than 1.  Recall that 2 rubber bands = 2𝐹.  
Something interesting happens – when we measure our 
acceleration we get 2𝑎1.

• We keep going,

• (𝐹, 𝑎1), (2𝐹, 2𝑎1), 3𝐹, 3𝑎1 , and (4𝐹, 4𝑎1)

• We have a trend?  There seems to be a linear relationship 
between Force and acceleration 𝑎 ∝ 𝐹

• Can we make a prediction?

• What multiple of 𝑎1 do we think will correspond to 5 
rubber bands?



What do Forces Do? 4/4
• We have one more variable under our control in 

this experiment – mass.

• We also have 1𝑘𝑔, 2𝑘𝑔, 3𝑘𝑔, and 4𝑘𝑔 blocks – 

all equivalent volume.

• Let's repeat our experiment with a single 

rubber band but each time lets switch to a 

more massive block.

• We get the following measurements: 

1𝑘𝑔, 𝑎1 , 2𝑘𝑔,
1

2
𝑎1 , 3𝑘𝑔,

1

2
𝑎1 , 4𝑘𝑔,

1

4
𝑎1

• Acceleration and mass appear to be related 

inversely: 𝑎 ∝
1

𝑚
.



Team Activity: Concept Check 4.2
In science we develop hypotheses, and we test them, and if 
they pass, we upgrade the hypothesis to a theories. Theory, in 
science, does not mean “guess” or “idea” as it often does in 
common vernacular. A theory is a model that makes accurate 
predictions about the world around us. If we come to an 
observation that our theory can’t explain, the ideal is to find a 
new hypothesis that not only explains everything that our 
previous theory did, but also our new observation.  If it does, 
we upgrade it to the new reigning theory – especially if it makes 
further predictions that turn out to be true.  We say that our 
new theory has more explanatory power than our old one.

We seem to have a working model for the relationship between 

acceleration and mass 𝑎 ∝
1

𝑚
.  Using this model, predict what 

𝒂 will be when 𝒎 = 𝟓𝒌𝒈.



Put It All Together…

𝑎 ∝ 𝐹          𝑎 ∝
1

𝑚

Ԧ𝑎 =
Ԧ𝐹

𝑚

Newton’s 2nd Law of Motion



Net Force

Ԧ𝐹𝑛𝑒𝑡 = ෍ Ԧ𝐹 = Ԧ𝐹𝑇 + Ԧ𝐹𝑁 + Ԧ𝐹𝑑 + Ԧ𝐹𝑠 + Ԧ𝐹𝑓 + Ԧ𝐹𝑤



Newton’s Second Law of Motion
An object of mass 𝑚 subjected to forces Ԧ𝐹1, Ԧ𝐹2, Ԧ𝐹3, … , Ԧ𝐹𝑁 will undergo an acceleration Ԧ𝑎 given by,

Ԧ𝑎 =
Ԧ𝐹𝑛𝑒𝑡

𝑚

where the net force Ԧ𝐹𝑛𝑒𝑡 = Ԧ𝐹1, + Ԧ𝐹2 +  Ԧ𝐹3+, … + Ԧ𝐹𝑁 is the vector sum of all forces acting on the object.  The 

acceleration vector, Ԧ𝑎, points in the same direction as the net force vector, Ԧ𝐹𝑛𝑒𝑡.

Newton’s Second Law is more than just a formula—it is a monumental shift in how we understand the universe. 
Before Newton, there was no clear framework for predicting how or why objects changed their motion. With 
this single law, Newton unified motion and force into a precise, quantitative relationship: force is not just 
something that causes motion—it causes a change in motion, and the amount of change depends on an 
object’s mass. This law gave us a way to predict the future behavior of physical systems from present 
conditions. It made physics predictive, not just descriptive. It laid the groundwork for everything from launching 
rockets to understanding planetary orbits—and it’s the first-time humans had a universal rule to connect cause 
(force) with effect (acceleration).



Example:  Connecting Kinematics to Newton’s 2nd Law

A Boeing 737 has a mass of 51,000 kg. It starts from rest  and then accelerates down the runway. After traveling 940 m, the plane 

reaches its take-off speed of 70 m/s and leaves the ground.  What thrust (a force) of each engine?

Solution:  We know we can relate thrust to acceleration via Newton’s second law – but how do we get 𝑎?  Kinematic equations!

𝑣𝑥
2 − 𝑣𝑜𝑥

2 = 2𝑎𝑥 𝑥 − 𝑥0  →  𝑎𝑥 =
𝑣𝑥

2 − 𝑣𝑜𝑥
2

2 𝑥 − 𝑥𝑜
=

70
𝑚
𝑠

2

2 940 𝑚
= 2.61 𝑚/𝑠2

Now use the 2nd Law:

𝐹𝑛𝑒𝑡 = 𝑚𝑎𝑥 = 51000𝑘𝑔 2.61
𝑚

𝑠2

= 133000
𝑘𝑔 ∙ 𝑚

𝑠2
= 1.33 × 105𝑁

where 1𝑁 = 𝑘𝑔 ∙ 𝑚/𝑠2

𝐹𝑛𝑒𝑡 = 2𝐹𝑒𝑛𝑔𝑖𝑛𝑒 → 𝐹𝑒𝑛𝑔𝑖𝑛𝑒 =
1.33 × 105𝑁 

2
= 6.70 × 104𝑁

In vector form, 
Ԧ𝐹𝑒𝑛𝑔𝑖𝑛𝑒 = 6.70 × 104𝑁 ො𝑥

Notice how Newton's Law 
doesn’t give us the 
acceleration directly—it tells 
us how to compute force 
once we know acceleration. 
We use motion to get a, then 
Newton to get F.



More on units of 
force…
• We have already seen Newtons: 1𝑁 = 𝑘𝑔 ∙ 𝑚/𝑠2

• This is the unit of force in the SI system (most used in 

science and engineering and by the rest of the world)

• More familiar to Americans is the pound-force (lbf): 

1 𝑙𝑏𝑓 = 1 𝑠𝑙𝑢𝑔 ∙
𝑓𝑡

𝑠2

• In everyday vernacular, when Americans give a 

weight in lbs, they really mean lbf.  

• lbs is technically lbm (pound-mass) and is to slugs 

what g is to kg – just a smaller unit mass.

• You can convert from lbf to N: 1 lbf = 1 lb = 4.45 N



Team Activity: Concept Check 4.3
Three forces act on an object.  In which 

direction does the object accelerate?



Free Body Diagrams
How to draw a free body diagram:

1. Identify all forces acting on an object.

2. Draw a coordinate system.

3. Represent the object as a dot at the 

origin of the coordinate axis.

4. Draw vectors representing each of the 

identified forces.

5. Draw and label the net force vector Ԧ𝐹𝑛𝑒𝑡.

Example: An elevator suspended by a cable, 

speeds up as it moves upward from the 

ground floor.  Draw a free-body diagram of 

the elevator. Elevator Diagram Free-Body Diagram

Notice that Ԧ𝐹𝑇 vector is longer than Ԧ𝐹𝑤 vector?



Team Activity:  Concept Check 4.4

An elevator suspended by a cable is moving 

upward and slowing to a stop. Which free-body 

diagram is correct?



Newton’s Third Law of Motion

Whenever one object exerts a force on a second object, the second object exerts and oppositely directed force 

of equal magnitude on the first object.
Ԧ𝐹12 = − Ԧ𝐹21

You Push the Wall — the Wall Pushes 
Back
• Ever tried pushing on a wall as hard as 

you can?
• You don’t move it — but you feel 

pushed backward.
• That’s the wall pushing you with equal 

force.

The astronaut pushes on 
the spacecraft with a force 
Ԧ𝐹 and the spacecraft 

simultaneously pushes 

back with − Ԧ𝐹.



The Normal Force: Surface Reaction

• When an object rests on a flat surface, the surface pushes 

back perpendicular (normal) to it.

• This upward force is called the normal force, and it 

balances the object’s weight when there’s no vertical 

acceleration.

• This is a consequence of Newton’s 3rd Law!

• It doesn’t always equal weight- only the part of the weight 

that presses into the surface.

A block rests on a horizontal 
surface.  The vector normal 

to the surface: Ԧ𝐹𝑁 = −𝐹𝑊 ො𝑦

A block rests on an inclined 
surface with angle 𝜃.  The 
vector normal to the surface: 
Ԧ𝐹𝑁 = −𝐹𝑊 cos 𝜃 ො𝑦

What does normal 
mean? It's not the 
opposite of weird in 
the physics context.  It 
means that a vector is 
900 to the surface. 



Team Activity: Concept Check 4.5
A person pushes down with a force of 11 N on a 

box resting on a horizontal surface.  The normal 

force is 26 N in the y direction.  Then they attach a 

rope with negligible weight to the box and pull it up 

with a force of 11 N – the normal force is 4N.  It 

both scenarios the weight of the block exerts a 15 

N force downward.  Why are they different?



A Mysterious Force
• (Our First Force at a Distance)

• In the 1600s, scientists were puzzled:

• Why do planets move the way they do?

• They followed paths in the sky—loops and ellipses—but no one knew why.

• Three of the brightest minds in England—Edmund Halley, Christopher 

Wren, and Robert Hooke—were trying to figure it out.

• They guessed the planets were being pulled by the Sun, and that the 

strength of the pull got weaker with distance.

• But none of them could prove it.

• Halley made a trip to see a reclusive genius in Cambridge: Isaac 

Newton. He asked:

• “What kind of path does something follow if it’s always pulled toward the 

center with a force that gets weaker as 

• Newton replied without hesitation: “An ellipse.”

• Halley was stunned. Newton had solved the 
problem years ago—and wrote it all down.

• That answer became the foundation of a book 
that would change the world:

• Principia Mathematica.

• Why This Still Matters
• Gravity was the first force ever discovered that 

acts at a distance—no contact needed.
• It holds the planets in orbit... and pulls an apple 

to the ground.
• Even today, we don’t fully understand it. Gravity is 

simple, mysterious, and fundamental.



Newton’s Law of Universal Gravitation
For two particles that have masses 𝑚1 and 𝑚2 and are 
separated by a distance 𝑟, the force that each exerts on 
the other is directed along the line joining the particles 
and has a magnitude given below:

Ԧ𝐹𝐺 = 𝐺
𝑚1𝑚2

𝑟2 Ƹ𝑟

where 𝐺 = 6.674 × 10−11𝑁 ∙ 𝑚/𝑘𝑔2 is the universal 
gravitational constant.

According to Newton’s 2nd Law, Ԧ𝐹 = 𝑚 Ԧ𝑎,

Ԧ𝐹𝐺 = 𝑚1 Ԧ𝑎 = 𝐺
𝑚1𝑚2

𝑟2
Ƹ𝑟

Ԧ𝑎 = 𝐺
𝑚2

𝑟2
Ƹ𝑟

Let’s consider 𝑚2 = 𝑚𝐸 = Mass of the Earth and take the 
magnitude only, and use the radius of the Earth, 𝑟𝐸:

𝑎 = 𝐺
𝑚𝐸

𝑟𝐸
2 = 6.674 × 10−11𝑁 ∙

𝑚

𝑘𝑔2

(5.972 × 1024𝑘𝑔)

6.71 × 106𝑚 2

 ≈ 9.81
𝑚

𝑠2
= 𝑔

Therefore 𝑔 = 9.81𝑚/𝑠2 is only valid near the Earth 
surface.  For any radius from the center of Earth:

𝑔 = 𝐺
𝑚𝐸

𝑟2



Team Activity:  Concept 
Check 4.5 

We found an expression for the acceleration to due gravity,  

Ԧ𝑎 = 𝐺
𝑚2

𝑟2 ෝ𝑟.

On the moon’s surface this becomes,

Ԧ𝑎 = 𝐺
𝑚𝑚

𝑟𝑚
2 Ƹ𝑟

where 𝑟𝑚 and 𝑚𝑚 are the radius and mass of the Moon, respectively.  
Now think back to the famous video of an astronaut dropping a feather 
and a hammer at the same time on the Moon. With no air resistance, 
they hit the ground at the same moment. Using this expression for 
gravitational acceleration, can you explain why?



Example: Newton’s Law of Gravitation
The Earth orbits the Sun at an average distance of 1.496 × 1011 𝑚 (1 AU).  The Sun has a mass of 𝑚⊙ = 1.989 ×

1030𝑘𝑔, and the Earth has a mass of 𝑚𝐸 = 5.972 × 1024 𝑘𝑔.   VY Canis Majoris, the largest known star, is  a red 

hypergiant star with a mass of about 17 times the mass of the Sun.  (a). At what distance VY Canis Majoris 

would Earth need to be to feel the same gravitational force that it feels with respect to the Sun? (b). VY Canis 

Majoris is also stupendous in size, with a radius of about 1,420 times the Sun’s radius.  Would Earth’s orbit at 

the distance you found lie outside the star or inside it? The radius of the sun, 𝑅⊙ = 6.96 × 108𝑚.

(a). Earth - Sun scenario:  𝐹1 = 𝐺
𝑚𝐸𝑚⊙

𝑟1
2

Earth – VY Canis Majoris scenario: 𝐹2 = 𝐺
𝑚𝐸𝑀

𝑟2
2

 𝐹1 = 𝐹2

𝐺
𝑚𝐸𝑚⊙

𝑟1
2 = 𝐺

𝑚𝐸𝑀

𝑟2
2

𝑟2 = 𝑟1

𝑀

𝑚⊙
= 𝑟1

17𝑚⊙

𝑚⊙
= 𝑟1 17

= 1.496 × 1011𝑚 17 =  6.10 × 1011 𝑚

(b). The radius of VY Canis Majoris,

𝑅𝐶𝑀 = 1420𝑅⊙ = 9.88 × 1011 𝑚

That is more than 1.42 times bigger than the orbit we 
calculated in (a).  For the Earth to feel the same 
gravitational force from VY Canis Majoris that it feels 
from the Sun, its distance from VY Canis Majoris 
would put it firmly inside the red hypergiant. 



Apparent Weight
Weight is a force—it’s the result of gravity acting on a 
mass. Apparent weight is the force an object seems 
to have when there’s additional acceleration involved, 
such as in an elevator or accelerating vehicle. The 
man’s wegith can be determined in each scenario by 
summing up the forces, 

𝐹𝑛𝑒𝑡 = 𝑁 − 𝑚𝑔 = 𝑚𝑎 → 𝑁 = 𝑚 𝑎 + 𝑔 =
𝐹𝑤

𝑔
𝑔 + 𝑎

Consider the following:

a) A man in an elevator that is not in motion has a 
weight of 𝐹𝑤 = 700 𝑁.

b) Accelerating upward 𝑎 = 2 𝑚/𝑠2

c) Accelerating downward 𝑎 = −2 𝑚/𝑠2

d) Free Fall 𝑎 = −𝑔

Case Acceleration 
𝒎

𝒔𝟐
Apparent
Weight (N)

a 0 700

b 2 843

c -2 557

d -g 0



Team Activity: Concept Check 4.6
You're standing on a scale in an elevator.

The scale briefly reads zero.

Which of the following must be true?

a) The elevator is at rest.

b) The elevator is accelerating 

downward at 9.8 m/s².

c) The elevator is moving downward at 

constant speed.

d) The elevator cable is pulling upward 

with a force equal to your weight.



From Sliding Shoes to Sliding Atoms: What is Friction, Really?

• We all know friction — it's why your shoes grip 

the floor, or why brakes stop a car.

• It resists motion — but why?

• Friction isn’t just about roughness — it’s about 

how atoms and molecules tug on each other 

when two surfaces meet.

Microscopic Roughness: 
Surfaces aren’t smooth.  
Lots of bumps 
(asperities).

Atomic Level:  Attractive 
and repulsive forces 
compete.



Static Frictional Force
• (a). Block is initially at rest, then a horizontal force is applied but the 

block does not move: Ԧ𝑓𝑠 = Ԧ𝐹.

• (b). A stronger force is applied; static friction force increases to 

match and block still does not move: Ԧ𝑓𝑠 = Ԧ𝐹.

• (c). A maximum static friction force is reached and Ԧ𝑓𝑠 ≤ Ԧ𝐹.  Block 
starts to move.

The magnitude 𝑓𝑠 of the static frictional force can have any value from 
zero up to a maximum value of 𝑓𝑠

𝑚𝑎𝑥, depending on the applied force.

  
𝑓𝑠

𝑚𝑎𝑥 = 𝜇𝑠𝐹𝑁

where 𝜇𝑠 is the coefficient of static friction, and 𝐹𝑁 is the magnitude of 
the normal force.



Example: Static Frictional Force
A snowboarder is standing motionless on a horizontal patch of snow. She is holding 
onto a horizontal tow rope, which is about to pull her forward.  The snowboarder’s 
mass is 60kg and the coefficient of static friction between her board and the snow is 
0.14. What is the magnitude of the maximum force that the tow rope can apply to the 
skier without causing her to move?

Use Newton’s 2nd Law to sum the forces:

(a). ∑𝐹𝑥 = 𝑚𝑎𝑥 = 𝐹 − 𝑓𝑠
𝑚𝑎𝑥 = 0 → 𝐹 = 𝑓𝑠

𝑚𝑎𝑥 = 𝜇𝑠𝐹𝑁 = 𝜇𝑠𝑚𝑔

(b). ∑𝐹𝑦 = 𝑚𝑎𝑦 = 𝐹𝑁 − 𝑚𝑔 = 0 → 𝐹𝑁 = 𝑚𝑔

𝐹 = 𝜇𝑠𝑚𝑔 = 0.14 60𝑘𝑔 9.81𝑚/𝑠2 = 81 𝑁

If the force exerted on the tow rope exceeds 81 N the snowboarder will begin to move.



Kinetic Frictional Force

• Once two surfaces begin sliding over one another, the friction 
becomes kinetic!

• It takes less force to keep an object sliding that it takes to get it 

going in the first place, Ԧ𝑓𝑘 < Ԧ𝑓𝑠
𝑚𝑎𝑥

• Independent of apparent area of contact between the surfaces 
and the speed (if small).

The magnitude 𝑓𝑘 of the kinetic friction force is given by
𝑓𝑘 = 𝜇𝑠𝐹𝑁

where 𝜇_𝑘 is the coefficient of kinetic friction, and 𝐹𝑁 is the 
magnitude of the normal force.



Example: Kinetic Fictional Force

Consider a block with mass 𝑀 sliding down and incline that is 𝜃 degrees from the 
horizontal surface.  Derive an expression for the final velocity of the block after it 
travels a distance 𝑑 down the incline once it is in motion.

Sum the forces in y: ∑ 𝐹𝑦 = 𝐹𝑁 − 𝑚𝑔 cos 𝜃 = 0 → 𝐹𝑁 = 𝑚𝑔 cos 𝜃

Sum the forces in x: ∑𝐹𝑥 = 𝑚𝑎𝑥 = 𝑚𝑔 sin 𝜃 − 𝑓𝑘 = 𝑚𝑔 sin 𝜃 − 𝜇𝑘𝐹𝑁

𝑚𝑎𝑥 = 𝑚𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃) 

𝑎𝑥 = 𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃)

Now use kinematic equations,

𝑣𝑥
2 − 𝑣0𝑥

2 = 2𝑎𝑥 𝑥 − 𝑥0 → 𝑣𝑥 = 2𝑔𝑑(sin 𝜃 − 𝜇𝑘 cos 𝜃)

This is an example of a nonequilibrium system (more on this later).



Team Activity: Concept Check 4.7 
On the previous slide we derived an expression for the 

acceleration of the black down the incline

𝑎𝑥 = 𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃)

Derive a condition for 𝜇𝑘 that must be true in order that 

must be true for the block to be in motion.



Tension
• Tension is the name we give to forces applied with things 

like cables or ropes (we have already seen this).

• In the figure,

a) A force that we call 𝑇 is being applied to the right end of a 

rope.

b) The force is transmitted to the box.

c) Via Newton’s 3rd law we know that forces are applied to 

both ends of the rope because the box applies a reaction 

force to the rope.

• We consider the rope massless

• a massless rope does not exist.

• We do this to study tension in isolation



Team Activity: Concept Check 4.8
Hooke and Kepler are in a tug-of-war match against Einstein 

and Newton. Each team pulls on the rope with a force of 

1000 N.

In round two, Hooke and Kepler tie their end of the rope to a 

tree, and Einstein and Newton pull on the other end with the 

same 1000 N force.

In both rounds, the pulling is steady, and the rope is taut.

Which statement is true?

a) The tension in the rope in round 1 is greater than in round 

2

b) The tension in the rope in round 1 is less than in round 2

c) The tension in the rope in round 1 and 2 are equivalent?



Equilibrium

∑𝐹 = 𝐹𝐻𝐾 + 𝐹𝐸𝑁 = 𝑚𝑎 = 0
𝐹𝐻𝐾 = −𝐹𝐸𝑁= −1000𝑁

∑𝐹 = 𝐹𝑇𝑅𝐸𝐸 + 𝐹𝐸𝑁 = 𝑚𝑎 = 0
𝐹𝑇𝑅𝐸𝐸 = −𝐹𝐸𝑁= −1000𝑁

Why is the tension the 
same? Use free body 
diagrams to analyze.  In 
both cases the 
acceleration of the 
rope is 0.  We call this 
state equilibrium. 
Newton’s third law tells 
us that the tree pulls 
back with an equal and 
opposite force. In 
equilibrium, this is also 
reflected by Newton’s 
second law. This is no 
different from the case 
with Hooke and Kepler!



Equilibrium Application of Newton’s Laws of Motion
Definition of Equilibrium

An object is in equilibrium when it has zero acceleration.

Ԧ𝑎 = 𝑎𝑥 ො𝑥 + 𝑎𝑦 ො𝑦 = 0 → 𝑎𝑥 = 𝑎𝑦 = 0

∑𝐹𝑥 = 0 ∑𝐹𝑦 = 0

Example:

An orangutan weighing 500N hangs from a vertical rope.  What is 
the tension in the rope?

∑𝐹𝑦 = 𝑇 − 𝑤 = 0

𝑇 = 𝑤 = 500𝑁



Example: Equilibrium
A wrecking ball weighing 2500N hangs from a 

cable.  Prior to swinging, it is pulled back to a 200 

angle by a second, horizontal cable.  What is the 

tension in the horizontal cable?

Solution:

𝑇1 = 𝑇2 sin 𝜃 =
𝑤

cos 𝜃
sin 𝜃 = 𝑤 tan 𝜃 = 2500𝑁 tan 200 = 910𝑁

∑𝐹𝑦 = 𝑇2 cos 𝜃 − 𝑤 = 𝑚𝑎𝑦 = 0

𝑇2 cos 𝜃 = 𝑤 → 𝑇2 = 𝑤/ cos 𝜃

∑𝐹𝑥 = 𝑇2 sin 𝜃 − 𝑇1 = 𝑚𝑎𝑥 = 0
𝑇1 = 𝑇2 sin 𝜃



Nonequilibrium Application of Newton’s Laws of Motion

Definition of Nonequilibrium

An object is in equilibrium when it has nonzero acceleration.

Ԧ𝑎 = 𝑎𝑥 ො𝑥 + 𝑎𝑦 ො𝑦 ≠ 0 

∑𝐹𝑥 ≠ 0 and/or ∑𝐹𝑦 ≠ 0

Block 1 (mass 𝑚1 = 800 𝑘𝑔) is moving on a frictionless 300 incline. This block 
is connected to block 2 (mass 𝑚2 = 22.0 𝑘𝑔) by a massless cord that passes 
over a massless and frictionless pulley.  Find the acceleration of each block and 
the tension in the cord.

I. ∑𝐹𝑥 = 𝑇 − 𝑚1𝑔 sin 𝜃 = 𝑚1𝑎𝑥  ∑𝐹𝑦 = 𝑁 − 𝑚1𝑔 cos 𝜃 = 0

II. ∑𝐹𝑥 = 0 ∑𝐹𝑦 = 𝑇′ − 𝑚2𝑔 = −𝑚2𝑎𝑦 → 𝑇′ = 𝑚2(𝑔 − 𝑎𝑦)

Note that 𝑎𝑥 = 𝑎𝑦 = 𝑎 T = T′ because the pulley is massless and frictionless.

𝑚2 𝑔 − 𝑎 − 𝑚1𝑔 sin 𝜃 = 𝑚1𝑎 𝑁 = 𝑚1𝑔 cos 𝜃

𝑎 𝑚1 + 𝑚2 = 𝑔(𝑚2 − 𝑚1 sin 𝜃)

𝑎 =
𝑔(𝑚2 − 𝑚1 sin 𝜃)

𝑚1 + 𝑚2
=

(9.81𝑚/𝑠2)(22 − 8 sin 300)𝑘𝑔

8 + 22 𝑘𝑔
= 5.89𝑚/𝑠2 𝑇 = 𝑚2 𝑔 − 𝑎 = 22𝑘𝑔 9.81 − 5.89 𝑚𝑠2= 86.2 N
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