
Dynamics of 
Circular Motion

Chapter Five



Uniform Circular Motion

You’ve probably seen this or maybe felt it yourself. You’re in a roller 
coaster, going fast and at a constant velocity, and then suddenly you 
are upside down. But weirdly, you don’t fall. You don’t dangle from your 
seatbelt. You feel like you're pressed into your seat, even though you 
are upside down. Why? Gravity is still pulling down. That hasn’t 
changed. But something else must be happening. Something is keeping 
you in your seat.

Any ideas?

That’s the question that will lead us into today’s topic - Uniform Circular Motion, 
which is the motion of an object traveling at a constant (uniform) speed on a 
circular path.



Team Activity:  Concept Question 5.1
Gus is easily entertained.  He spends hours in a field 

playing with a ball on a string.  He spins the ball in the air 

in uniform circular motion – meaning that it moves at a 

constant speed along a circular path. He begins to 

wonder:

Is the acceleration zero, constant, or is it changing?  



Centripetal Acceleration
• While the speed is constant, recall that the instantaneous 

velocity, Ԧ𝑣, is a vector, and thus if it changes direction, the 

velocity is not constant – only its magnitude is.  

• if Ԧ𝑣 is not constant, there must be an instantaneous 

acceleration, Ԧ𝑎.

• In fact, there is an acceleration at every point in the motion, 

directed toward the center of the circle called centripetal 

acceleration,

The instantaneous velocity 
Ԧ𝑣 is tangent to the circle at 
all points.

The instantaneous 
acceleration Ԧ𝑎 is 
directed toward the 
center of the circle 
at all points.

Ԧ𝑎 =
𝑣2

𝑟
Ƹ𝑟



Team Activity: Concept Check 5.2

A car is turning a tight corner at a 

constant speed.  A top view of the motion 

is shown.  The velocity vector at 𝑡0 points 

northeast, and at 𝑡 points northwest.  

Which represents the acceleration 

direction at the two times?

a

b

c



Period, Frequency, and Speed
• When a mass moves with uniform circular motion and completes one full 

circle, the next circle it makes is just a repeat of the first – so the motion is 
periodic.

• The time interval it takes an object to  go around a circle one time, 
completing one revolution (rev), is called the period of motion and is 
represented by 𝑇 and sometimes 𝜏. We will use 𝑇.

• The frequency of circular motion is the number of revolutions per second 

𝑓 =
1

𝑇
 and has units 𝐻𝑧 = 𝑠−1.

• The figure shows an object moving at constant speed in a circular path of 
radius 𝑟.  We know the time for one revolution – one period 𝑇 –and we know 
the distance around the circle, the circumference, 𝐶 = 2𝜋𝑟.  So we can write 
the speed, distance over time, as,

𝑣 =
2𝜋𝑟

𝑇
= 2𝜋𝑓𝑟 = 𝜔𝑟

• Now we can define centripetal acceleration in terms of period or frequency 
as,

𝑎 =
𝑣2

𝑟
= 2𝜋𝑓 2𝑟 =

2𝜋

𝑇

2

𝑟 = 𝜔2𝑟

• Here, we have used 𝜔 = 2𝜋𝑟 = 2𝜋/𝑇, which is known as the angular 
frequency.  Think of it as the angular rate or angle per unit time.



Example: A spinning table saw blade
The circular blade of a table saw is 25 cm in diameter and spins at 3600 rpm.  How 
much time is required for one revolution? How fast is one of the teeth at the edge 
of the blade moving? What is the tooth’s acceleration?

Solution:

Each tooth is undergoing uniform circular motion (unless its Ryobi), so we can use 
the equations from the previous slide after converting minutes to seconds,

𝑓 = 3600
𝑟𝑒𝑣

𝑚𝑖𝑛
×

1𝑚𝑖𝑛

60𝑠
= 60

𝑟𝑒𝑣

𝑠
= 60𝐻𝑧

The time for one revolution is the period,

𝑇 =
1

𝑓
=

1

60𝑠−1
0.017𝑠

The speed of the tooth is,
𝑣 = 2𝜋𝑓𝑟 = 2𝜋 60𝑠−1 0.125 𝑚 = 47 𝑚/𝑠

The centripetal acceleration,

𝑎 = 2𝜋𝑓 2𝑟 = 2𝜋 60𝑠−1 2
0.125𝑚 = 1.8 × 104 𝑚/𝑠2



Team Activity: Concept Check 5.3
Rank in order, from largest to smallest, the period of 

the motion of particles, a through d, that are 

undergoing uniform circular motion. 

a. 𝑣 =
2𝜋𝑟

𝑇
→ 𝑇 =

2𝜋𝑟

𝑣

b. 2𝑣 =
2𝜋𝑟

𝑇
→ 𝑇 =

𝜋𝑟

𝑣

c. 𝑣 =
2𝜋 2𝑟

𝑇
→ 𝑇 =

4𝜋𝑟

𝑣

d. 2𝑣 =
2𝜋 2𝑟

𝑇
→ 𝑇 =

2𝜋𝑟

𝑣

Ranking: c, a & d, b



Centripetal Force
• Even in uniform circular motion, with acceleration, comes 

force (Newton’s 2nd Law):

Ԧ𝐹𝑛𝑒𝑡 = 𝑚 Ԧ𝑎 =
𝑚𝑣2

𝑟
Ƹ𝑟

• here Ƹ𝑟 is the direction toward the center of the circle.

• In other words, a particle of mass m moving at constant 

speed v around a circle of radius r must always have a net 

force of magnitude 𝑚𝑣2/𝑟 pointing toward the center of the 

circle.

• It is this net force that causes the centripetal acceleration.

• Without it, the particle would move off in a straight line.

• The force could be tension, friction, the normal force, etc.



Example: Gus and The Gravitron
Gus is at the amusement park, standing in line for the Gravitron—a ride 
shaped like a large spinning cylinder. Riders stand with their backs 
against the wall as the chamber spins in uniform circular motion. Once 
it reaches full speed, the floor drops away, yet the riders remain 
“stuck” to the wall, apparently defying gravity.

Concerned about slipping, Gus wants to calculate the minimum 
coefficient of static friction needed to keep from sliding down the wall. 
He asks for your help.

The specifications of the ride are as follows:

• Radius of the chamber: 𝑟 = 8 𝑚

• Frequency of rotation: 𝑓 = 24 𝑟𝑒𝑣/𝑚𝑖𝑛

• Gus’s mass: 70 kg

Solution:  Sum the forces in the radial and y directions,

∑𝐹𝑟 = 𝐹𝑁 =
𝑚𝑣2

𝑟

∑𝐹𝑦 = 𝐹𝑓 − 𝐹𝑤 = 𝑚𝑎𝑦 → 𝜇𝑠𝐹𝑁 − 𝑚𝑔 = 0 → 𝜇𝑠

𝑚𝑣2

𝑟
= 𝑚𝑔

𝜇𝑠 =
𝑟𝑔

𝑣2
=

𝑟𝑔

2𝜋𝑓𝑟 2
=

𝑔

2𝜋𝑓 2𝑟

ො𝑦

Ƹ𝑟

𝑓 = 24
𝑟𝑒𝑣

𝑚𝑖𝑛
×

1𝑚𝑖𝑛

60𝑠
= 0.4

𝑟𝑒𝑣

𝑠
= 0.4𝐻𝑧

𝜇𝑠 =
𝑔

2𝜋𝑓 2𝑟
=

9.81 𝑚/𝑠2

2𝜋 0.4𝑠−1 2
(8 𝑚)

= 0.19



Example: Banked Curves
A car is going around a friction-free banked curve.  The radius of the curve is 𝑟, where 𝑟 
is measured parallel to the horizontal and not to the slanted surface.  The next image 
shows the normal force Ԧ𝐹𝑁 that the road applies to the car, the normal force being 
perpendicular to the road

The force responsible for centripetal force is the force that points to the center of the 
circular track,

𝐹𝐶 = 𝐹𝑁 sin 𝜃 =
𝑚𝑣2

𝑟

The vertical component of the normal force must balance the weight of the car because 
there is no acceleration in the vertical direction,

𝐹𝑁 cos 𝜃 = 𝑚𝑔

Let's divide these two equation because why not?

𝐹𝑁 sin 𝜃

𝐹𝑁 cos 𝜃
=

𝑚𝑣2/𝑟

𝑚𝑔
→ tan 𝜃 =

𝑣2

𝑟𝑔
→ 𝑣 = 𝑟𝑔 tan 𝜃

What do greater speeds and larger values of r require to maintain

centripetal motion?



Gravitational Orbits

In this problem, we will derive expressions for the orbital speed and orbital 
period of a satellite in circular orbit around a planet, using the principles of 
uniform circular motion and Newton’s law of universal gravitation. To 
ground our derivation in a real-world example, we consider the Cassini 
Orbiter, a spacecraft that spent over a decade studying Saturn and its 
moons.

𝐹𝐶 = 𝐺
𝑚𝑀

𝑟2
=

𝑚𝑣2

𝑟
→ 𝑣 =

𝐺𝑀

𝑟

Notice the mass of the satellite does not appear – for a given orbit , a 
satellite with a large mass has the same orbital speed as one with small 
mass!

We know how period relates to velocity,

𝑣 =
2𝜋𝑟

𝑇
=

𝐺𝑀

𝑟
→ 𝑇 =

2𝜋𝑟3/2

𝐺𝑀

This proportionality, 𝑇~𝑟3/2, was discovered by Johannes Kepler over 400 
years ago!



Example: Locating a geostationary satellite

Communication satellites appear to “hover” over one point on the 

Earth’s equator.  A satellite that appears to remain stationary as the Earth 

rotates is said to be in a geostationary orbit.  What is the radius of the 

orbit of such a satellite?

Solution: For a satellite to remain stationary with respect to the Earth, 

the satellite’s period must be 24 hours. 

𝑇 =
2𝜋𝑟3/2

𝐺𝑀
→ 𝑟 =

𝐺𝑀𝐸𝑇2

4𝜋2

1/3

=
3 𝐺𝑀𝐸𝑇2

4𝜋2

𝑟 =
3 6.67 × 10−11 𝑁 ⋅ 𝑚2/𝑘𝑔2 5.98 × 1024𝑘𝑔 8.64 × 104𝑠 2

4𝜋2  

= 4.23 × 107𝑚



Gravity on a Grand Scale



The Hubble Ultra Deep Field covers a patch of sky 
about the size of a grain of sand held at arm’s length 

and contains approximately 10,000 galaxies.

Each point of light in this photo from big to small is 
an entire galaxy, each with billions to trillions of stars 

in it all interacting with each other via gravity.

Every sand grain size of sky we point telescopes at; 
we see tens of thousands of galaxies.

Estimates of the number of galaxies in our 
observable universe: 

2 × 1011 to 2 × 1012

Stars in the observable universe: 1 × 1024

Estimated grains of sand on the Earth: 1 × 1019

There are 100,000 times more stars in 
the Universe than grains of Sand on 

Earth!

The Hubble Ultra Deep Field



Example: Orbital Speed of A Star in the Andromeda Galaxy

Assume that a star is orbiting the galactic center of the andromeda 
galaxy at a radius of 𝑟 = 30,000 𝑙𝑦.  If the total mass of Andromeda 
that is contained within that radius is 𝑀 = 2 × 1041 𝑘𝑔, estimate the 
orbital speed of the star using Newton’s laws.

Solution:  Convert lightyears (ly) to meters,

30,000 𝑙𝑦 ×
9.46 × 1015𝑚

1 𝑙𝑦
= 2.8 × 1020𝑚

𝐹 = 𝑚𝑎 =
𝐺𝑀𝑚

𝑟2
=

𝑚𝑣2

𝑟
→ 𝑣 =

𝐺𝑀

𝑟

=
(6.647 × 10−11𝑁 ⋅ 𝑚2/𝑘𝑔2)(2 × 1041𝑘𝑔)

2.8 × 1020𝑚
= 2.7 × 105

𝑚

𝑠

= 485,620 𝑚𝑝ℎ

In our own galaxy, the Milky Way, our Sun 
and all of its planets, move around the 
galactic center  with an orbital speed of 

𝑣 = 514,000 𝑚𝑝ℎ



Example: Artificial Gravity

Imagine a massive artificial ring encircling a star exactly like the Sun. The ring 
rotates to simulate gravity on its inner surface. What should the radius of the 
ring be if the artificial gravity experienced by people standing on the inner 
surface is equal to Earth’s gravity and the ring completes one full rotation every 
24 hours?

Solution: We know that the centripetal force is,

𝐹𝑐 =
𝑚𝑣2

𝑟

The floor of this ring world exerts a normal force on the feet of the man in the 
ring world city; the normal force is the centripetal force!

𝐹𝑁 = 𝑚𝑔 =
𝑚𝑣2

𝑟
= 𝐹𝐶 → 𝑟 =

𝑣2

𝑔
=

𝜔𝑟 2

𝑔
→ 𝑟 =

𝑔

𝜔2
=

𝑔

2𝜋
𝑇

2

There are 86400 𝑠 in 24 ℎ𝑜𝑢𝑟𝑠,

𝑟 =
9.81𝑚𝑠2

2𝜋
86400𝑠

= 1.85 × 105 𝑚
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