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The Amazing Gunjito
The approach we used to solve this works only at the bottom of the swing because:

• The motion is approximately circular at that point.
• Gunjito’s velocity and direction of motion are known (3.0 m/s, tangential).

However, let’s suppose we now want to calculate the tension when the rope is at a 45° angle 
from vertical.

Why Newton’s Laws Aren’t Enough (Yet)

At that point in the swing:

1. Gunjito’s speed is unknown.
• We only know he was moving at 3.0 m/s at the bottom.
• To use 𝐹 = 𝑚𝑎, we need to know the centripetal acceleration 𝑎𝑐 = 𝑣2/𝑟, which means 

we must know 𝑣 at 𝜃 = 450 and due to gravity, the speed will be different throughout. 

2. There is no simple way to relate the motion at different points in the swing using only 
Newton’s Laws.

• To solve for velocity at different points, we’d need to know how the forces acted over 
time or distance - but our current tools don’t give us a way to connect velocity at one 
point to another when the net force is changing constantly.

Why We Need a New Tool: What we need is a way to relate motion at one location (e.g., the 
bottom of the swing) to motion at another (e.g., 45°)  - even if we don’t know the details of how 
the forces changed his speed along the way.



Work Done by a Constant Force

Work is how we measure the effect a force has when it causes 

something to move.

𝑊 = 𝐹Δ𝑥 cos 𝜃

• 𝑊 is work, measured in Joules; 1 𝐽 = 1 𝑘𝑔 ⋅ 𝑚2/𝑠2.

• 𝐹 is force, measured in Newtons.

• Δ𝑥 is the displacement of the object.

• 𝜃 is the angle between the force and the displacement. 

Properties:

• When Ԧ𝐹 and Δ Ԧ𝑥 have parallel components → positive work.

• When Ԧ𝐹 and Δ Ԧ𝑥 have anti-parallel components → negative 

work. Note that 𝑐𝑜𝑠 𝜃 is 
bound between 1 
and -1.  



Team Activity:  
Concept Check 
6.1

A man pushes a box across a floor.  Does the 

resulting frictional force between the box and 

the floor do negative or positive work?



Team Activity: 
Concept Check 
6.2

A weightlifter holds a barbell over his head.  A 

woman carries a heavy briefcase some distance 

d.  Who does more work:

• The weightlifter holding a barbell over his head

• The woman carrying the briefcase



Example:  Work like a dog (or wolf)
A husky pulls a box on a sled a distance 𝑑 with a tension of 

𝑇1 = 200 𝑁.  A wolf does the same but with a tension of 𝑇2 =

600 𝑁 at an angle 𝜃.   What is 𝜃 if the dog and wolf did the 

same amount of work  over the distance 𝑑? Assume 

everything else is equal: friction, sled, box, etc.

Solution:

The dog does work: 𝑊 = 𝑇1𝑑

The wolf does work: 𝑊 = 𝑇2𝑑 cos 𝜃

If they do the same work: 𝑇1𝑑 = 𝑇2𝑑 cos 𝜃 → 𝜃 = cos−1 𝑇1

𝑇2

Therefore,

𝜃 = cos−1
𝑇1

𝑇2
= cos−1

200

600
= 70.50 Angle Matters!



The Work-Energy Theorem

• A net external force, Ԧ𝐹𝑛𝑒𝑡, acts on an airplane of mass 𝑚 moving 

it a distance Ԧ𝑠 = Ԧ𝑥 − Ԧ𝑥0.

• Ԧ𝐹𝑛𝑒𝑡 = ∑𝐹𝑥 → sum of all external forces, for simplicity assume all 

in ො𝑥 direction.

• At 𝑥0 it has an initial Ԧ𝑣0, at 𝑥 a final Ԧ𝑣.

Ԧ𝐹𝑛𝑒𝑡

Ԧ𝑠

Ԧ𝑣0 Ԧ𝑣

ො𝑥

Start with Newton’s 2nd Law:

𝐹𝑛𝑒𝑡 = 𝑚𝑎
𝑊𝐹𝑛𝑒𝑡

= 𝐹𝑛𝑒𝑡𝑠 = 𝑚𝑎𝑠

Recall from kinematics,

𝑣2 − 𝑣0
2 = 2𝑎 𝑥 − 𝑥0 = 2𝑎𝑠

Rewritten,

𝑎𝑠 =
1

2
(𝑣2 − 𝑣0

2)

Now sub it into (1),

𝑊𝐹𝑛𝑒𝑡
=

1

2
𝑚 𝑣2 − 𝑣0

2 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2

= 𝐾𝐸 − 𝐾𝐸0

Where 𝐾𝐸 =
1

2
𝑚𝑣2 is KINETIC ENERGY!

Multiply by the 
displacement s 
to get the work 
done by the net 
external force

𝐾𝐸0 𝐾𝐸

Work results from a change in 
kinetic energy!



Kinetic Energy and the Work-Energy Theorem

Definition of Kinetic Energy

The kinetic energy KE of an object with mass 𝑚 and speed 𝑣 is given by

𝐾𝐸 =
1

2
𝑚𝑣2

SI Unit of Kinetic Energy: joule (J)

The Work-Energy Theorem

When a net external force does work 𝑊 on an object, the kinetic energy of the object changes from its 
initial value of 𝐾𝐸0 to a final value 𝐾𝐸, the difference between them being equal to the work:

𝑊 = 𝐾𝐸 − 𝐾𝐸0 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2



Example:  KE and the W-E Theorem
A 58 kg box is coasting down a 250 slope.  Near the top of the slope 

its speed is 3.6 𝑚/𝑠.  It accelerates down the slope because of the 

gravitational force, even though a kinetic frictional force with 𝜇𝑘 =

0.14 opposes its motion.  Ignoring air resistance, determine the 

speed at a point that is displaced 57 m downhill.  

Solution: Sum the forces,∑𝐹 = 𝑚𝑔 sin 𝜃 − 𝑓𝑘

If we multiply by the displacement we get work, 

𝑊 = (𝑚𝑔 sin 𝜃 − 𝜇𝑘𝑚𝑔 cos 𝜃)𝑠

Use the Work-Energy Theorem,

𝑊 = 𝐾𝐸 − 𝐾𝐸0 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2 = 𝑚 𝑔 sin 𝜃 − 𝜇𝑘𝑔 cos 𝜃 𝑠

𝑣 = 𝑣0
2 + 2𝑔𝑠(sin 𝜃 − 𝜇𝑘 cos 𝜃)

= 3.6 2 +  2(9.81)(57)(sin 250 − 0.14 cos 250) 𝑚/𝑠 = 19 𝑚/𝑠



Chapter 4 Example: Kinetic Fictional Force

Consider a block with mass 𝑀 sliding down and incline that is 𝜃 degrees from the 
horizontal surface.  Derive an expression for the final velocity of the block after it 
travels a distance 𝑑 down the incline once it is in motion.

Sum the forces in y: ∑ 𝐹𝑦 = 𝐹𝑁 − 𝑚𝑔 cos 𝜃 = 0 → 𝐹𝑁 = 𝑚𝑔 cos 𝜃

Sum the forces in x: ∑𝐹𝑥 = 𝑚𝑎𝑥 = 𝑚𝑔 sin 𝜃 − 𝑓𝑘 = 𝑚𝑔 sin 𝜃 − 𝜇𝑘𝐹𝑁

𝑚𝑎𝑥 = 𝑚𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃) 

𝑎𝑥 = 𝑔(sin 𝜃 − 𝜇𝑘 cos 𝜃)

Now use kinematic equations,

𝑣𝑥
2 − 𝑣0𝑥

2 = 2𝑎𝑥 𝑥 − 𝑥0 → 𝑣𝑥 = 2𝑔𝑑(sin 𝜃 − 𝜇𝑘 cos 𝜃)

This is an example of a nonequilibrium system (more on this later).

The same problem but with 𝑣0 = 0 
because it starts from rest!  Here we 
used Newton’s 2nd Law and 
Kinematics, but on the previous slide 
we used the Work-Energy Theorem!
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Gravitational Potential Energy
Consider a basketball dropped from some height ℎ0.  It falls due to gravity, a 
force.  Define ො𝑦 to be up, then the distance the ball falls is, ℎ − ℎ0.  Therefore,

𝑊𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝐹𝑔𝑟𝑎𝑣𝑖𝑡𝑦𝑠 = −𝑚𝑔 cos 00 ℎ − ℎ0 = 𝑚𝑔ℎ0 − 𝑚𝑔ℎ

Notice that we have a change in some quantity, and we get work!  But there is 
no velocity involved this time – so its not kinetic energy.  

Gravitational Potential Energy

The gravitational potential energy PE is the energy that an object of mass m has 
by virtue of its position relative to the surface of the earth.  That position is 
measured by the height h of the object relative to an arbitrary zero level:

𝑃𝐸 = 𝑚𝑔ℎ

SI Unit of Gravitational Potential Energy: Joule (J)



Team Activity: Concept Check 6.3

There are two paths shown in the diagram that 

the basketball could take from the initial height 

to the final height.  Path I drops straight down, 

its motion completely in the ො𝑦 direction, while 

path II goes above ℎ0 with velocity components 

in both directions and then eventually down to 

ℎ.  Which path requires more work done by 

gravity? 

𝑊𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔ℎ0 − 𝑚𝑔ℎ



Team Activity: Concept Check 6.4

What is the work done by gravity on the 

basketball if it drops from a height ℎ0 bounces 

off the court floor, and in the absence of air 

resistance, returns to its initial height ℎ0?

𝑊𝑔𝑟𝑎𝑣𝑖𝑡𝑦 = 𝑚𝑔ℎ0 − 𝑚𝑔ℎ

Assume that there is no deformation in the 

basketball when it collides with the floor.



Conservative Forces
Definition of a Conservative Force

Version 1: A force is conservative when the work it 
does on a moving object is independent of the path 
between the object’s initial and final positions.

Version 2: A force is conservative when it does no net 
work on an object moving around a closed path, 
starting and finishing at the same point.

Examples of conservative forces:

• Gravitational force

• Elastic spring force

• Electrical force

3 paths between two points: 
Path 1 (red), Path 2 (green), 
Path 3 (blue).

𝑊1 = 𝑊2 = 𝑊3



Nonconservative Forces
Definition of Nonconservative Forces

Version 1: A force is nonconservative if the work it does on an object 

moving between two points depends on the path of the motion between 

the points.  

Version 2:  A force is nonconservative when it does non-zero net work on 

an object moving around a closed path, starting and finishing at the same 

point.

The concept of potential energy is undefined for a nonconservative force.

Examples:
• Frictional force
• Air resistance
• Tension
• Normal force
• Propulsion force

3 paths between two points: 
Path 1 (red), Path 2 (green), 
Path 3 (blue).

𝑊1 ≠ 𝑊2 ≠ 𝑊3

Friction:
• When you push a block across a surface with friction, your applied force 

does positive work, adding energy to the system.
• However, friction does negative work, converting some of that mechanical 

energy into heat—and that energy is permanently lost from the system.
• If you take a longer or rougher path, friction removes more energy, 

because the work it does depends on the path, not just the start and end 
points.



Work Due to Conservative and Nonconservative Forces
Consider a system with conservative and nonconservative forces contributing to the motion of some object.

𝑊 = 𝑊𝐶 + 𝑊𝑁𝐶

According to the work energy theorem, 𝑊 = Δ𝐾𝐸,

𝑊 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2 = 𝑊𝐶 + 𝑊𝑁𝐶

If the only conservative force acting on the object is the gravitational force, 𝑊𝐶 = 𝑚𝑔(ℎ0 − ℎ),

1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2 = 𝑚𝑔 ℎ0 − ℎ + 𝑊𝑁𝐶 → 𝑊𝑁𝐶 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ − 𝑚𝑔ℎ0

𝑊𝑁𝐶 = Δ𝐾𝐸 + Δ𝑃𝐸

The net work 𝑊𝑁𝐶  done by all the external nonconservative forces equals the change in the object’s kinetic energy plus the change in its 
gravitational potential energy.  

Generalized Work-Energy Theorem



The Conservation of Mechanical Energy
From the previous slide,

𝑊𝑁𝐶 =
1

2
𝑚𝑣2 −

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ − 𝑚𝑔ℎ0

=
1

2
𝑚𝑣2 + 𝑚𝑔ℎ −

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0 = 𝐸𝑓 − 𝐸0

Suppose that 𝑊𝑁𝐶 = 0 𝐽, meaning that the net work by all 

nonconservative forces is zero (either because there are none 

or they cancel each other out),

𝑊𝑁𝐶 = 0 = 𝐸𝑓 − 𝐸0 →  𝐸𝑓 = 𝐸0

1

2
𝑚𝑣2 + 𝑚𝑔ℎ =

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0

The Principle of Conservation of Mechanical Energy

The total mechanical energy (𝐸 = 𝐾𝐸 + 𝑃𝐸) of an 
object remains constant as the object moves, 
provided that the net work done by external 
nonconservative forces, 𝑊𝑁𝐶 = 0 𝐽.

Energy cannot be 
created or 
destroyed, but it can 
change forms!



Conversion between PE and KE



Example: The Conservation of Mechanical Energy
A block is sliding down a frictionless ramp.  At position 𝑥0 it is at a height ℎ0 
with velocity 𝑣0.  At position 𝑥 it is at a height ℎ with a velocity 𝑣. Derive an 
expression for the final velocity 𝑣.

Method 1: Sum the forces, 2nd Law ∑𝐹𝑥 = 𝑚𝑔 sin 𝜃 = 𝑚𝑎 → 𝑎 = 𝑔 sin 𝜃

Use kinematics: 𝑣2 − 𝑣0
2 = 2𝑎 𝑥 − 𝑥0 = 2𝑠𝑔 sin 𝜃 → 𝑣 = 𝑣0

2 + 2𝑠𝑔𝑠𝑖𝑛 𝜃

Method 2: Use the Work-Energy Theorem,

1

2
𝑚𝑣2 + 𝑚𝑔ℎ =

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0 → 𝑣2 = 𝑣0
2 + 2𝑔 ℎ0 − ℎ

We can write ℎ and ℎ0,
ℎ0 = (𝑑 − 𝑥0) sin 𝜃  ℎ = 𝑑 − 𝑥 sin 𝜃  → ℎ0 − ℎ = 𝑥 − 𝑥0 sin 𝜃

𝑣2 = 𝑣0
2 + 2𝑔 𝑥 − 𝑥0 sin 𝜃 → 𝑣 = 𝑣0

2 + 2𝑠𝑔𝑠𝑖𝑛 𝜃

ො𝑥



The Amazing Gunjito Revisited
We can use the conservation of energy to derive and expression for the velocity 
at any angle in Gunjito’s swing.  

First, lets assume he starts from 900 and swings down to the lowest part,

𝐾𝐸0 + 𝑃𝐸0 = 𝐾𝐸𝐹 + 𝑃𝐸𝐹

0 + 𝑚𝑔𝑙 =
1

2
𝑚𝑣2 + 𝑚𝑔𝑙(1 − cos 𝜃) → 𝑣 = 2𝑔𝑙 cos 𝜃

Now we can finally get the tension in the rope at any point in Gunjito’s swing,

∑𝐹𝑟 = 𝐹𝑇 − 𝑚𝑔 cos 𝜃 = 𝑚𝑎𝑐 =
𝑚𝑣2

𝑙
=

2

𝑙
𝑔𝑚𝑙 cos 𝜃 = 2𝑔𝑚 cos 𝜃

𝐹𝑇 = 3𝑔𝑚 cos 𝜃

Notice the maximum velocity occurs at 𝜃 = 0 → 𝑣𝑚𝑎𝑥 = 2𝑔𝑙 cos 00 = 2𝑔𝑙

Notice the minimum velocity occurs at 𝜃 = 900 → 𝑣𝑚𝑖𝑛 = 2𝑔𝑙 cos 900 = 0

Gunjito is going to get those peanuts!

To solve this with just Newton’s 2nd Law 
would require a much more complicated 
approach involving calculus and solving a 
differential equation – this is much easier!



Nonconservative Forces and Work-Energy Theorem

slide 9

Let's revisit the block on the ramp but this time lets permit friction between the block and 
the ramp surface.  We can no longer set 𝑊𝑁𝐶 = 0 𝐽 because friction is a nonconservative 
force.  We begin with,

𝑊𝑁𝐶 =
1

2
𝑚𝑣2 + 𝑚𝑔ℎ −

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0 = 𝐸𝑓 − 𝐸0

Just as before we write ℎ in terms of 𝜃,
ℎ0 − ℎ = 𝑥 − 𝑥0 sin 𝜃 = 𝑠 sin 𝜃

Solving the W-E Theorem, for 𝑣,

𝑣 =
2

𝑚
𝑊𝑁𝐶 + 𝑣0

2 + 2𝑠𝑔 sin 𝜃

Notice this is identical to the example from the previous slide when 𝑊𝑁𝐶 = 0 𝐽. In this case 
we know the form of 𝑊𝑁𝑆 due to the 2nd Law and our study of friction,

𝑊𝑁𝐶 = 𝐹𝑛𝑒𝑡,𝑐 ⋅ 𝑠 = −𝜇𝑘𝐹𝑁 ⋅ 𝑠 = −𝜇𝑘𝑚𝑔 cos 𝜃 ⋅ 𝑠

Plugging that into our expression for velocity,

𝑣 = 𝑣0
2 + 2𝑔𝑠(sin 𝜃 − 𝜇𝑘 cos 𝜃)

This is the exact result we got back on slide 9 showing consistency.  You won’t always be 
able to calculate 𝑊𝑁𝐶  but sometimes it can be measured and used in problems.



Example:  Nonconservative forces in free fall

Consider a basketball with a mass of 0.6 kg in free fall in Earth’s atmosphere.  It is dropped at a height of 1010 m and has a 

measured speed of 79 𝑚/𝑠 at 10 m.  Using the W-E theorem with 𝑊𝑁𝐶 = 0 to compare a calculated 𝑣 to our measured 

𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑.

1

2
𝑚𝑣2 + 𝑚𝑔ℎ =

1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0 → 𝑣 = 𝑔(ℎ0 − ℎ) = 9.81(1010 − 1000) = 99 𝑚/𝑠

Uh oh!  Our 𝑣 doesn’t match what was given in the problem – in fact, that is a huge difference.  That is because there is air 

resistance.  Now we don’t yet have a model for air resistance yet, but we can use our measurement of 𝑣 estimate the 

contribution of 𝑊𝑁𝐶,

𝑊𝑁𝐶 =
1

2
𝑚𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 + 𝑚𝑔ℎ −
1

2
𝑚𝑣0

2 + 𝑚𝑔ℎ0 = 𝑚 𝑔 ℎ − ℎ0 +
1

2
𝑣𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

2 = 0.6 9.81 −1000 +
1

2
79 2

= −4014 𝐽

Now we know that -4014 J of energy was lost to air resistance.  As expected, the negative sign means that nergy was removed 

from the system by the environment.

Note:  If you lived in a world without vacuums, air tracks, or 
frictionless carts, wouldn’t you think objects naturally slow 
down and stop? 



Power
• Consider two cars with the same mass.

• Car 1 does 0-60 mph in 4 seconds

• Car 2 does 0-60 mph in 8 seconds

• Each car does the same amount of work, 

𝑊, but car 1 does it more quickly!

• Quicker performance in cars is 

associated with horsepower:

• A large horsepower means an engine can 

do a larger amount of work  in a short 

time.

• just one way to describe something 

called power.

Definition of Average Power

Average power ത𝑃 is the average rate at which work 𝑊 is 
done, and it is obtained by dividing 𝑊 by the time 𝑡 
required to perform the work:

ത𝑃 =
𝑊

𝑡
SI Unit of Power: Joule / s = watt (W)

Think of average power as the change in energy per unit 
time.

1 horsepower = 550 foot-pounds/second = 745.7 watts



Work Done by a Variable 
Force

• In this chapter we only considered work done by 
a constant force (constant acceleration).  

• Many forces are variable:

• Spring forces (a function of distance)

• Gravity (a function of distance – can be 
approximated near Earth as a constant)

• Air resistance (a function of velocity)

• Magnetic force (Physics 203)

• Buoyant force (Physics 202)

• Tension in a swinging pendulum (a function of 
angle – more in Physics 202)

• The “quick and dirty” way to approximate the 
work:

Graphically, if we plot 
𝐹 cos 𝜃 vs Δ𝑠 for a 
constant force, the 
area under the line 
equals the total work, 
𝑊 = 𝑙ℎ = 𝐹 cos 𝜃 ⋅ Δ𝑠

However, if 𝐹 is variable, there is no simple formula in algebra to find 
the area.  However, we could imagine that the area under the curve is 
made up of rectangles that roughly approximate it

𝑊 ≈ 𝐹1 cos 𝜃 ⋅ Δ𝑠1 + 𝐹2 cos 𝜃 ⋅ Δ𝑠2 + ⋯ = ෍

𝑖=1

𝑁

𝐹𝑖 cos 𝜃 Δ𝑠𝑖𝑊 ≈ ത𝐹 cos 𝜃 ⋅ Δ𝑠



Team Activity: Concept Check 6.5
Using the graphical method, what are two things 

that you can do to increase the accuracy of 

approximating work?

𝑊 ≈ 𝐹1 cos 𝜃 ⋅ Δ𝑠1 + 𝐹2 cos 𝜃 ⋅ Δ𝑠2 + ⋯ = ෍

𝑖=1

𝑁

𝐹𝑖 cos 𝜃 Δ𝑠𝑖

In calculus this is the idea of the integral,

𝑊 = lim
𝑛→ ∞

෍

𝑖=1

𝑛

𝐹 𝑥𝑖 Δx𝑖 cos 𝜃 = න
𝑎

𝑏

Ԧ𝐹 𝑥 ∙ 𝑑 Ԧ𝑥



Energy: Final Thoughts
Is energy real or just math?

In Newtonian physics,

• Energy is a derived quantity

• It measures the capacity to do work based on 
forces over distances.

In deeper physics, energy becomes foundational.

• Forces arise from changes in energy.

• There is no need for Newton’s laws.

• In fact, in our most modern understanding of 
gravity, there are no gravitational forces – just 
geometry!

Force is nature’s response to energy being 
uneven. If energy is balanced, nothing moves.
If energy is “lopsided,” things accelerate to even 
it out. Systems tend toward lower energy states!
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