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Momentum

Chapter 7



Time Varying Force

• In the video, a baseball is hit by a bat and captured 8,800 
fps.

• Just before the bat touches the ball, 𝑡0, 𝐹 = 0
• During contact, force rises to a maximum and then 

decreases back to 0.  
• Over Δ𝑡 = 𝑡𝑓 − 𝑡0, 𝐹 changed.  𝐹 = 𝐹(𝑡).

• Our current tools do not allow us to 
describe how a time-varying force 
affects the motion of an object.

• Two ideas will help us do just this:
• Impulse
• Linear Momentum



Impulse and Momentum Defined
Definition of Impulse

The impulse Ԧ𝐽 of a force is the product of the time averaged force Ԧത𝐹 and the time interval Δ𝑡 during which the force acts:

Ԧ𝐽 = Ԧത𝐹Δ𝑡

Impulse is a vector quantity and has the same direction as the time averaged force.

SI Unit of Impulse: 𝑁 ⋅ 𝑠

Definition of Linear Momentum

The linear momentum Ԧ𝑝 of an object is the product of the object’s mass 𝑚 and velocity Ԧ𝑣:

Ԧ𝑝 = 𝑚 Ԧ𝑣

Linear momentum is a vector quantity that points in the same direction as the velocity.

SI Unit of Linear Momentum: 𝑘𝑔 ⋅ 𝑚/𝑠

ത𝐹

Δ𝑡



Team Activity: Concept Question 7.1
The two graphs time averaged force-versus-time data 

for two collisions. Which force delivers the greater 

impulse?



Impulse-Momentum Theorem
• We can use Newton’s 2nd Law to reveal a relationship between impulse and linear momentum,

∑ Ԧത𝐹 = 𝑚 Ԧ𝑎 = 𝑚
Ԧ𝑣𝑓 − Ԧ𝑣0

Δ𝑡
=

𝑚 Ԧ𝑣𝑓 − 𝑚 Ԧ𝑣0

Δ𝑡

Ԧ𝐽 = ∑ Ԧത𝐹Δ𝑡 = 𝑚 Ԧ𝑣𝑓 − 𝑚 Ԧ𝑣0 = Ԧ𝑝𝑓 − Ԧ𝑝0

• Amazing!  Why?  During a collision, it is difficult to determine∑ Ԧത𝐹 but it is easy to measure the velocities!

Impulse-Momentum Theorem

When a net average force ∑ Ԧത𝐹 acts on an object during a time interval Δ𝑡, the impulse of this force is equal to 

the change in momentum of the object:
Ԧ𝐽 = 𝑚 Ԧ𝑣 − Ԧ𝑣0 = Δ𝑝

The effect of an impulsive force is to change the object’s momentum from Ԧ𝑝0 to Ԧ𝑝𝑓 = Ԧ𝑝0 + Ԧ𝐽,.



Example: Calculating the change in momentum

A ball of mass 𝑚 = 0.25 𝑘𝑔 rolling to the right at 1.3 𝑚/𝑠 strikes a wall 

and rebounds to the left at 1.1 𝑚/𝑠.  (a). What is the change in the ball’s 

momentum?  (b). What is the impulse delivered to it by the wall?

Solution: (a).The x-component of the initial momentum is,

𝑝𝑥,0 = 𝑚𝑣𝑥,0

The x-component of the final momentum is, 

𝑝𝑥,𝑓 = −𝑚𝑣𝑥,𝑓

The change in the x-component of the momentum,

Δ𝑝𝑥 = 𝑝𝑥,𝑓 − 𝑝𝑥,0 = 𝑚 −𝑣𝑥,𝑓 − 𝑣𝑥,0 = 0.25 −1.3 − 1.1 𝑘𝑔 ⋅ 𝑚/𝑠

= −0.60 𝑘𝑔 ⋅ 𝑚/𝑠

(b). Now use the impulse-momentum theorem,

𝐽𝑥 = Δ𝑝𝑥 = −0.60 𝑘𝑔 ⋅ 𝑚/𝑠

Before

During

After

When the ball hits the wall, it deforms, creating internal motion and losing energy. The impulse–momentum theorem still gives the impulse for translational motion, but the 
total impulse from the force–time integral also includes the part that went into deformation and internal motion. In a perfectly elastic collision, the change-in-momentum 
method and the force–time method give the same impulse. In an inelastic collision, they differ.



The Principle of Conservation of Linear Momentum
• The system consists of two objects in motion.

a. Collision course:  the objects are moving with initial velocities toward each other.

b. The objects collide 

c. The objects depart with final velocities.

• Two types of forces act on the system:

1. Internal forces: forces objects within the system exert on each other. Examples: Ԧ𝐹12 and Ԧ𝐹21.

2. External forces: forces exerted on the objects by agents external to the system. Examples: Ԧ𝐹𝑔1 and Ԧ𝐹𝑔2.

• Use the Impulse-Momentum Theorem:

• Object 1: Ԧ𝐹𝑔1 + തԦ𝐹12 Δ𝑡 = 𝑚1( Ԧ𝑣𝑓1 − Ԧ𝑣01)

• Object 2: Ԧ𝐹𝑔2 + തԦ𝐹21 Δ𝑡 = 𝑚2( Ԧ𝑣𝑓2 − Ԧ𝑣02)

• Add: Ԧ𝐹𝑔1 + Ԧ𝐹𝑔2 + തԦ𝐹12+ തԦ𝐹21 Δ𝑡 = (𝑚1 Ԧ𝑣𝑓1 + 𝑚2 Ԧ𝑣𝑓2) -(𝑚1 Ԧ𝑣01 + 𝑚2 Ԧ𝑣02) 

• Ԧ𝐹12 = − Ԧ𝐹21 → തԦ𝐹12+ തԦ𝐹21 = 0 →  ∑ Ԧ𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙Δ𝑡 = Ԧ𝑝𝑓 − Ԧ𝑝0

• If ∑ Ԧ𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 0 →  0 = Ԧ𝑝𝑓 − Ԧ𝑝0 = 0 → Ԧ𝑝𝑓 = Ԧ𝑝0

The Principle of Conservation of Linear Momentum

The total linear momentum of an isolated system remains constant (is conserved). An isolated 
system is one for which the vector sum of the average external forces acting on the system is zero.

𝑚1 Ԧ𝑣01 + 𝑚2 Ԧ𝑣02 = 𝑚1 Ԧ𝑣𝑓1 + 𝑚2 Ԧ𝑣𝑓2

(a) Before 

(b) During collision

(c) After 



Example: Conservation of Linear Momentum 1/4
An archer stands at rest on frictionless ice; his total mass 

including his bow and quiver of arrows is 60 kg.  His draw length 

is 0.800 m.

a. If the archer fires a 0.030 kg arrow horizontally at 50.0 m/s in 

the positive x direction, what is his subsequent velocity 

across the ice?

b. He then fires a second identical arrow at the same speed 

relative to the ground but at an angle of 300 above the 

horizontal.  Find his new speed.

c. Estimate the average normal force acting on the archer as 

the second arrow is accelerated by the bowstring.  



Example: Conservation of Linear Momentum 2/4
An archer stands at rest on frictionless ice; his total mass 
including his bow and quiver of arrows is 60 kg.  His draw length 
is 0.800 m.

a. If the archer fires a 0.030 kg arrow horizontally at 50.0 m/s in 
the positive x direction, what is his subsequent velocity 
across the ice?

Solution: Start with the conservation of momentum,

𝑝0𝑥 = 𝑝𝑓𝑥

Let 𝑚1 and 𝑣1 be the archer’s mass and velocity after firing the 
arrow, respectively, and 𝑚2 and 𝑣2𝑓 the arrow’s mass and 

velocity.  Both velocities are in the x-direction.  The initial 
velocities of both the arrow and archer are 0,

0 = (𝑚1−𝑚2)𝑣1𝑓 + 𝑚2𝑣2𝑓

𝑣1𝑓 = −
𝑚2

(𝑚1−𝑚2)
𝑣2𝑓 = −

0.030 𝑘𝑔

59.97 𝑘𝑔
50.0

𝑚

𝑠
= −0.025 𝑚/𝑠

If the archer is using one of his arrows, his 
mass becomes:
𝑚1 − 𝑚2 = 60.0 − 0.030  𝑘𝑔 = 59.97 𝑘𝑔



Example: Conservation of Linear Momentum 3/4
An archer stands at rest on frictionless ice; his total mass 

including his bow and quiver of arrows is 60 kg.  His draw length 

is 0.800 m.

b. He then fires a second identical arrow at the same speed 

relative to the ground but at an angle of 300 above the 

horizontal.  Find his new speed.

Solution: Again, the conservation of momentum, but this time 

the archer is still sliding from firing the first arrow,

𝑚1𝑣10 = 𝑚1 − 2𝑚2 𝑣1𝑓 + 𝑚2𝑣2𝑓 cos 𝜃

𝑣1𝑓 =
𝑚1

𝑚1 − 2𝑚2
𝑣10 −

𝑚2

𝑚1 − 2𝑚2
𝑣2𝑓 cos 𝜃

=
59.97 𝑘𝑔

59.94 𝑘𝑔
−0.025 𝑚/𝑠 −

0.030 𝑘𝑔

59.94 𝑘𝑔
50.0 𝑚/𝑠 cos 300

𝑣1𝑓 = −0.0467 𝑚/𝑠

If the archer is using a second one of his 
arrows, his mass becomes:
𝑚1 − 2𝑚2 = 60.0 − 2 ⋅ 0.030  𝑘𝑔 = 59.94 𝑘𝑔

Note we used the archer’s final velocity 
from part a as the initial velocity.



Example: Conservation of Linear Momentum 4/4
An archer stands at rest on frictionless ice; his total mass including his bow 
and quiver of arrows is 60 kg.  His draw length is 0.800 m.

c. Estimate the average normal force acting on the archer as the second 
arrow is accelerated by the bowstring.  

Solution: Use kinematics in 1D to estimate the acceleration of the arrow:

𝑣2 − 𝑣0
2 = 2𝑎Δ𝑥 → 𝑎 =

𝑣2 − 𝑣0
2

2Δ𝑥
=

50 𝑚/𝑠 2 − 0

2 0.800 𝑚
= 1.56 × 103 𝑚/𝑠2

Find Δ𝑡 of the arrow: 𝑣2𝑓 = 𝑣0 + 𝑎Δ𝑡

Δ𝑡 =
𝑣2𝑓 − 𝑣0

𝑎
=

50 − 0 𝑚/𝑠

1.56 × 103𝑚/𝑠2
= 0.032 𝑠

Now use the impulse momentum theorem in the y-direction,

ത𝐹𝑦Δ𝑡 = Δ𝑝𝑦 →  ത𝐹𝑦 =
Δ𝑝𝑦

Δ𝑡
=

𝑚2𝑣2𝑓 sin 𝜃

Δ𝑡

The average normal force is given by the archer’s weight plus ത𝐹𝑦,

∑𝐹𝑦 = 𝐹𝑁 − 𝑚1𝑔 − ത𝐹𝑦 = 0 → 𝐹𝑁 = 𝑚1𝑔 +
𝑚2𝑣2𝑓 sin 𝜃

Δ𝑡

𝐹𝑁 = 59.94 𝑘𝑔 9.81 𝑚𝑠2 +
0.030 𝑘𝑔 50.0 𝑚𝑠 sin 300

0.032 s
= 6.11 × 102𝑁

This problem is essentially a simplified version of rocket 
propulsion. The archer plus his remaining arrows is like a rocket 
plus its remaining fuel. Each arrow is a “fuel unit” ejected at a 
fixed speed relative to the rocket, and the archer’s recoil after 
each shot comes from conservation of momentum. As the total 
mass decreases, each shot has a larger effect—exactly the same 
principle that governs the Tsiolkovsky rocket equation used in 
early spaceflight calculations.



Team Activity: 
Concept Check 
7.2 

In the previous problem, the archer fired an 

arrow twice.  The first arrow he fired horizontally 

and the second at an angle to the horizontal.  If 

the archer had fired both arrows horizontally, 

what would the new average normal force be?



Collisions in One Dimension
Collisions are classified according to whether the kinetic energy of the system changes during the collision:

1. Elastic Collision: One in which the total kinetic energy of the system after the collision is equal to the total 

kinetic energy before the collision: 𝐾𝐸𝑓 = 𝐾𝐸0

2. Inelastic Collision: One in which the total kinetic energy of the system is not the same before and after the 

collision: 𝐾𝐸𝑓 ≠ 𝐾𝐸0

In either type of collision, momentum is conserved
Ԧ𝑝𝑓 = Ԧ𝑝0



Elastic Collisions 
The figure shows an elastic head-on collision between two 

balls. No external forces act on the balls.  What are the 

velocities of the balls after the collisions?

Solution: Elastic → 𝐾𝐸𝑓 = 𝐾𝐸0

𝐾𝐸𝑓 =
1

2
𝑚1𝑣𝑓1

2 +
1

2
𝑚2𝑣𝑓2

2 =
1

2
𝑚1𝑣01

2 +
1

2
𝑚2𝑣02

2 = 𝐾𝐸0

𝑣𝑓1
2 = 𝑣01

2 −
𝑚2

𝑚1
𝑣𝑓2

2 − 𝑣02
2

Now use the conservation of momentum to get a value for 

𝑣𝑓2:

𝑚1𝑣𝑓1 + 𝑚2𝑣𝑓2 = 𝑚1𝑣01 + 𝑚2𝑣02

𝑣𝑓2 =
𝑚1

𝑚2
𝑣01 − 𝑣𝑓1 + 𝑣02

Before

After



Example: Elastic Collisions
The figure shows an elastic head-on collision between two balls. No 
external forces act on the balls. One ball has a mass of 𝑚1 = 0.250 𝑘𝑔 and 
an initial velocity of 𝑣01 = 5.00 𝑚/𝑠 in the ො𝑥 direction.  The other, 𝑚2 =
0.80 𝑘𝑔 and is initially at rest. 

What are the velocities of the balls after the collisions?  

Solution: Use the two equations from the previous slide

𝑣𝑓1
2 = 𝑣01

2 −
𝑚2

𝑚1
𝑣𝑓2

2 − 𝑣02
2 = 𝑣01

2 −
𝑚2

𝑚1
𝑣𝑓2

2

𝑣𝑓2 =
𝑚1

𝑚2
𝑣01 − 𝑣𝑓1 + 𝑣02 =

𝑚1

𝑚2
𝑣01 − 𝑣𝑓1 → 𝑣𝑓2

2 =
𝑚1

𝑚2

2

𝑣01 − 𝑣𝑓1
2

Before

After

Substitute [2] into [1],

𝑣𝑓1
2 = 𝑣01

2 −
𝑚2

𝑚1

𝑚1

𝑚2

2

𝑣01 − 𝑣𝑓1
2

→ 𝑣01
2 − 𝑣𝑓1

2 =
𝑚1

𝑚2
𝑣01 − 𝑣𝑓1

2

𝑣01 − 𝑣𝑓1 𝑣01 + 𝑣𝑓1 =
𝑚1

𝑚2
(𝑣01 − 𝑣𝑓1)(𝑣01 − 𝑣𝑓1)

𝑣01 + 𝑣𝑓1 =
𝑚1

𝑚2
𝑣01 − 𝑣𝑓1 → 𝑣𝑓1

𝑚1

𝑚2
+ 1 = 𝑣01

𝑚1

𝑚2
− 1

𝑣𝑓1 = 𝑣01

𝑚1
𝑚2

− 1

𝑚1
𝑚2

+ 1  
= 𝑣01

𝑚1 − 𝑚2

𝑚1 + 𝑚2
→ 𝑣𝑓1 = 𝑣01

𝑚1 − 𝑚2

𝑚1 + 𝑚2

[1]

[2]

𝑣𝑓2 =
𝑚1

𝑚2
𝑣01 − 𝑣𝑓1 = 𝑣01

2𝑚1𝑚2

𝑚1 + 𝑚2
→ 𝑣𝑓2 = 𝑣01

2𝑚1𝑚2

𝑚1 + 𝑚2

𝑣𝑓1 = 5.00 𝑚/𝑠
0.250 − 0.80

0.250 + 0.80
= −2.62 𝑚/𝑠

𝑣𝑓2 = 5.00 𝑚/𝑠
2 ⋅ 0.250 ⋅ 0.80

0.250 + 0.80
= 2.38 𝑚/𝑠



What if they stick together?
Two balls, 𝑚1 and 𝑚2, are on a collision course with velocities Ԧ𝑣1 
and Ԧ𝑣2.  After colliding, through some unknown process become a 
single larger ball with mass 𝑀 = 𝑚1 + 𝑚2 and velocity 𝑉.  

The conservation of momentum tells us that, Ԧ𝑝𝑓 = Ԧ𝑝0, so in the ො𝑥 
direction we know that,

𝑝𝑓 = 𝑚1 + 𝑚2 𝑉 = 𝑚1𝑣1 + 𝑚2𝑣2 = 𝑝0 → 𝑉 =
𝑚1𝑣1 + 𝑚2𝑣2

𝑚1 + 𝑚2

Now let's look at the kinetic energy,

𝐾𝐸𝑓 =
1

2
𝑚1 + 𝑚2 𝑉2 → 𝐾𝐸𝑓 =

1

2
𝑚1 + 𝑚2

𝑚1𝑣1 + 𝑚2𝑣2

𝑚1 + 𝑚2

2

𝐾𝐸𝐹 =
𝑚1𝑣1 + 𝑚2𝑣2

2

2(𝑚1 + 𝑚2)

𝐾𝐸0 =
1

2
𝑚1𝑣1

2 +
1

2
𝑚2𝑣2

2

𝐾𝐸0 − 𝐾𝐸𝑓 =
1

2

𝑚1𝑚2

𝑚1 + 𝑚2
𝑣1 − 𝑣2

2

This final expression means that 𝐾𝐸0 ≠ 𝐾𝐸𝑓 unless 𝑣1 = 𝑣2!

If two objects collided then 𝑣1 ≠ 𝑣2 otherwise 
there could be no collision, momentum 
change, or change in kinetic energy!  So, if two 
objects collide and stick together the collision 
is completely inelastic! Whatever process 
allowed the masses to stick together used 
kinetic energy resulting in the  inelastic 
condition: 𝐾𝐸0 ≠ 𝐾𝐸𝑓



Example: Inelastic Collisions
A ballistic pendulum can be used to measure the speed of a projectile, such as a 
bullet.  The ballistic pendulum consists of a stationary block of wood with mass 𝑚2 
suspended by a wire of negligible mass.  A bullet with mass 𝑚1 is fired into the 
block, and the block (now with the bullet in it) swings to a maximum height of ℎ𝑓  
above the initial position.  Find the speed at which the bullet is fired, assuming that 
air resistance is negligible.  

Solution: Since the bullet and block stick after the collision, it is completely 
inelastic.  Momentum is still conserved,

𝑝𝑓 = 𝑚1 + 𝑚2 𝑣𝑓 = 𝑚1𝑣01 = 𝑝0 → 𝑣01 =
𝑚1 + 𝑚2

𝑚1
𝑣𝑓

While we can’t use conservation of energy on the bullet, we can use it on the block 
once the bullet is lodged in it since nonconservative forces do no work as they are 
perpendicular to the direction of motion.

𝑃𝐸 = 𝑚1 + 𝑚2 ℎ𝑓 =
1

2
𝑚1 + 𝑚2 𝑣𝑓

2 = 𝐾𝐸 → 𝑣𝑔 = 2𝑔ℎ𝑓

𝑣01 =
𝑚1 + 𝑚2

𝑚1
2𝑔ℎ𝑓

Note: It is tempting to say that the total PE at the top of the swing is equal to the KE 
of the bullet just before the collision, but it is nonelastic so that would not work as 
some KE is spent in the collision when the bullet sticks to the block.

(a)

(b)



Problem Solving Insight: Collisions

Elastic Collisions

Ԧ𝑝𝑓 = Ԧ𝑝0

𝐾𝐸𝑓 = 𝐾𝐸0

𝐸𝑓 = 𝐸0

Inelastic Collisions

Ԧ𝑝𝑓 = Ԧ𝑝0

𝐾𝐸𝑓 ≠ 𝐾𝐸0

𝐸𝑓 ≠ 𝐸0

Note: Often the problem can be split into two 

parts.  Before and after the collision.  Use the 

conservation of momentum before the collision, 

and after the collision, the resulting motion can 

often be described with the conservation of 

mechanical energy.



Collisions in Two Dimensions
• Linear momentum is a vector, and just like all vectors it can be broken 

down into its individual components.  If there are velocity components 

in x and y then you can write the conservation of momentum for both,

• x-component: 𝑚1𝑣𝑓1𝑥 + 𝑚2𝑣𝑓2𝑥 = 𝑚1𝑣01𝑥 + 𝑚2𝑣02𝑥

• y-component: 𝑚1𝑣𝑓1𝑦 + 𝑚2𝑣𝑓2𝑦 = 𝑚1𝑣01𝑦 + 𝑚2𝑣02𝑦

• For the diagram on the right,

• x-component: 𝑚1𝑣𝑓1 cos 𝜃𝑓 + 𝑚2𝑣𝑓2 cos 𝜙𝑓 = 𝑚1𝑣01 sin 𝜃0 + 𝑚2𝑣02

• y-component: 𝑚1𝑣𝑓1 sin 𝜃𝑓 − 𝑚2𝑣𝑓2 sin 𝜙𝑓 = −𝑚𝑣01 cos 𝜃0



Center of Mass • The center of mass is a point that represents the average location for the total mass 
of a system.

• Why Do We Care About the Center of Mass?

• Simplifies Complex Motion: When dealing with complicated systems such as 
spinning, breaking, tumbling objects, it lets us treat them as if all the mass 
were concentrated at a single point. This means we can apply Newton’s laws to 
the motion of the system using just the center of mass.

• Connects to Real-World Intuition:

• When you throw a wrench, it spins, but its center of mass moves like a 
regular projectile.

• When a car crashes, investigators look at the center of mass to 
reconstruct the motion.

• When rockets launch, they balance fuel tanks to keep the center of mass 
in line with the thrust.

• Necessary for Conservation Laws: If no external force acts on a system, the 
center of mass doesn’t accelerate. 

• Consider the diagram, 

𝑥𝑐𝑚 =
𝑚1𝑥1 + 𝑚2𝑥2

𝑚1 + 𝑚2
→ 𝑥𝑐𝑚 =

∑𝑖=1
𝑛 𝑚𝑖𝑥𝑖

∑𝑖=1
𝑛 𝑚𝑖

If you've ever seen someone do a cartwheel or 
toss a baton, you might think their motion is 
chaotic. But in physics, we can find one special 
point that behaves in a very predictable, simple 
way, ignoring all the spinning and flailing, and 
that’s the center of mass. It's like the quiet, 
orderly leader of a marching band, walking in a 
straight line while the rest of the group dances 
around them.

If 𝑚1 = 𝑚2 = 𝑚,

𝑥𝑐𝑚 =
𝑚(𝑥1 + 𝑥2)

2𝑚

=
1

2
𝑥1 + 𝑥2Generalized Form



Team Activity: 
Concept Check 
7.3 

In the diagram, which is not drawn to scale, if 

𝑚1 > 𝑚2, do you expect the center-of-mass to 

be to the left or right of the midpoint and why?



Change in the Center-of-Mass
Displacement: 

• Δ𝑥𝑐𝑚 =
𝑚1Δ𝑥1+𝑚2Δ𝑥2

𝑚1+𝑚2

• General: Δ𝑥𝑐𝑚 =
∑𝑖=1

𝑛 𝑚𝑖Δ𝑥𝑖

∑𝑖=1
𝑛 𝑚𝑖

Velocity:

• 𝑣𝑐𝑚 = lim
Δ𝑡→ ∞

Δ𝑥𝑐𝑚

Δ𝑡
=

𝑚1𝑣1+𝑚2𝑣2

𝑚1+𝑚2

• General: 𝑣𝑐𝑚 =
∑𝑖=1

𝑛 𝑚𝑖𝑣𝑖

∑𝑖=1
𝑛 𝑚𝑖

 

Revisit previous example.  

Before: 𝑣𝑐𝑚 =
0.250 𝑘𝑔 5.00 𝑚/𝑠 +(0.800 𝑘𝑔)(0 𝑚/𝑠)

0.250+0.800 𝑘𝑔
= 1.19 𝑚/𝑠

After: 𝑣𝑐𝑚 =
0.250 𝑘𝑔 −2.62 𝑚/𝑠 +(0.800 𝑘𝑔)(2.38 𝑚𝑠)

0.250+0.800 𝑘𝑔
= 1.19 𝑚/𝑠

Elastic.  One ball has a mass of 𝑚1 =
0.250 𝑘𝑔 and an initial velocity of 𝑣01 =
5.00 𝑚/𝑠 in the ො𝑥 direction.  The other, 
𝑚2 = 0.80 𝑘𝑔 and is initially at rest.  
Recall we calculated 𝑣𝑓1 = −2.62 𝑚/𝑠 

and 𝑣𝑓2 = 2.38 𝑚/𝑠

The velocity of the center of 
mass is the same before and 
after objects interact during an 
elastic collision!



Example: Center-of-Mass 1/4
Two objects undergo an elastic collision.  Object 1is a 5 kg ball moving 

along the x-axis, and object 2 is a 3 kg ball moving along the y-axis.  The 

initial positions and velocities of the objects: 

𝑥1, 𝑦1 = 2,0 𝑚, Ԧ𝑣10 = 3,0 𝑚/𝑠

𝑥2, 𝑦2 = 0,4 𝑚,  𝑣2,0 = 0, −2 𝑚/𝑠

a. Calculate the initial position of the center of mass (𝑥𝑐𝑚, 𝑦𝑐𝑚) of the 

system.

b. Determine the velocity of the center-of-mass Ԧ𝑣𝑐𝑚,0 of the system 

before the collision.

c. What is the final velocities of the two objects after the collision?



Example: Center-of-Mass 2/4
Two objects undergo an elastic collision.  Object 1is a 5 kg ball moving 
along the x-axis, and object 2 is a 3 kg ball moving along the y-axis.  The 
initial positions and velocities of the objects: 

𝑥1, 𝑦1 = 2,0 𝑚, Ԧ𝑣10 = 3,0 𝑚/𝑠

𝑥2, 𝑦2 = 0,4 𝑚,  𝑣2,0 = 0, −2 𝑚/𝑠

a. Calculate the initial position of the center of mass (𝑥𝑐𝑚, 𝑦𝑐𝑚) of the 
system.

Solution: Calculate 𝑥𝑐𝑚 and 𝑦𝑐𝑚.

𝑥𝑐𝑚 =
𝑚1𝑥1 + 𝑚2𝑥2

𝑚1 + 𝑚2
=

(5 𝑘𝑔)(2 𝑚)

5 + 3 𝑘𝑔
= 1.25𝑚

𝑦𝑐𝑚 =
𝑚1𝑦1 + 𝑚2𝑦2

𝑚1 + 𝑚2
=

(3 𝑘𝑔)(4 𝑚)

5 + 3 𝑘𝑔
= 1.5 𝑚

𝑥𝑐𝑚, 𝑦𝑐𝑚 = 1.25, 1.5  𝑚



Example: Center-of-Mass 3/4
Two objects undergo an elastic collision.  Object 1is a 5 kg ball moving 

along the x-axis, and object 2 is a 3 kg ball moving along the y-axis.  The 

initial positions and velocities of the objects: 

𝑥1, 𝑦1 = 2,0 𝑚, Ԧ𝑣10 = 3,0 𝑚/𝑠

𝑥2, 𝑦2 = 0,4 𝑚,  𝑣2,0 = 0, −2 𝑚/𝑠

b. Determine the velocity of the center-of-mass Ԧ𝑣𝑐𝑚,0 of the system 

before the collision.

Solution: Again, compute the x and y components.

𝑣𝑐𝑚𝑥0
=

𝑚1𝑣1,0 + 𝑚2𝑣2,0

𝑚1 + 𝑚2 𝑥

=
(5 𝑘𝑔)(3 𝑚/𝑠)

5 + 3 𝑘𝑔
≈ 1.88 𝑚/𝑠

𝑣𝑐𝑚𝑦0
=

𝑚1𝑣1,0 + 𝑚2𝑣2,0

𝑚1 + 𝑚2 𝑦

=
(3 𝑘𝑔)(−2 𝑚/𝑠)

5 + 3 𝑘𝑔
= −0.75 𝑚/𝑠

Ԧ𝑣𝑐𝑚 = 1.88, −0.75 𝑚/𝑠 = 1.88 ො𝑥 − 0.75 ො𝑦  𝑚/𝑠



Example: Center-of-Mass 4/4
Two objects undergo an elastic collision.  Object 1is a 5 kg ball moving 

along the x-axis, and object 2 is a 3 kg ball moving along the y-axis.  The 

initial positions and velocities of the objects: 

𝑥1, 𝑦1 = 2,0 𝑚, Ԧ𝑣10 = 3,0 𝑚/𝑠

𝑥2, 𝑦2 = 0,4 𝑚,  𝑣2,0 = 0, −2 𝑚/𝑠

c. What is Ԧ𝑣_𝑐𝑚𝑓 after the collision?

SURPRISE TEAM ACTIVITY: Concept Check 7.4
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