Restoring Forces, Simple Harmonic Motion, and Elasticity

Chapter 10



Equilibrium and Oscillation

When the ball is displaced

from equilibrium . . .

Equilibrium
position

. a free-body The farther away
diagram shows a from equilibrium, the

net restoring force. greater the net force.

Consider a marble that is free to roll inside a spherical
bowl. The marble has an equilibrium position at the
bottom of the bowl where it will rest with no net force.
If you push the marble away from equilibrium, the
marble’s weight leads to a net force directed back
toward the equilibrium position. We call this a
restoring force. Notice that the magnitude of this
force increases as the marble is moved further away
from the equilibrium position.

When the ball is released, a restoring
force pulls it back toward equilibrium.

. . Where the restoring
force 1s directed back
toward equilibrium.

: ]
Inertia causes the -«
ball to continue
moving to the

other side . . .

If you pull the marble to the side and release it, it
doesn’t just roll back to the bottom of the bowl and
stay put. It keeps on moving, rolling up and down each
side of the bowl, repeatedly moving through its
equilibrium position. We call such a repetitive motion
an oscillation. This oscillation is a result of an
interplay between the restoring force and the marble’s
inertia.



Motion thatis

sinusoidalis called:

Simple Harmonic
Motion

Frequency and Period

........ The period T'is the time to
complete one oscillation.
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reversing direction

Released at the right
side of the bowl

Going the other way
through equilibrium

Passing through the
equilibrium position

Position, Velocity, and Acceleration in Simple Harmonic Motion
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Example: Understanding the motion of a glider on a spring

An air-track glider oscillates horizontally on a spring at a
frequency of 0.50 Hz. Suppose the glider is pulled to the right
of its equilibrium position by 12 cm and then released. Where
will the glider be 1.0 s after its release? What is its velocity at
this point?

Solution: The frequencyis f = 0.50 Hz, therefore the period is,

1
—=—=5=20s

I=2=050

The maximum amplitude, or displacement, is 12.0 cm, and it
initially occursatt = 0 s.

1.0 s is exactly half of the period. As the graph of the motion
shows, half of the cycle brings the glider to its left turning point,
12 cm to the left of equilibrium. The velocity at this point is
zero.

X (cm)

12

..-The starting point of the motion

\\ /, 1(s)
0.5

P 2.0

At 1.0 s, the glider

F.,. has completed half

of one cycle.



Linear Restoring Forces 1/2

Consider a glider on a track without friction. The glider is
connected to the end of the track by a spring.

We displace the glider by Ax. The spring stretches, gets
stiffer, and wants to compress, which would pull the glider
to the left. Just like our marble in a bowl, there is a force
that tries to pull it back toward its equilibrium position.

E, = kA%

Here k is the spring constant and depends on the spring.
Notice due to the way we have defined direction that if we
compress the spring, Ax < 0, and if we stretch the spring,
Ax > 0.

If we write the above equation in terms of the component
of the spring force, we get the relationship between the
restoring force and the displacement which is known as
Hooke’s Law:

— <+

-
The negative sign tells us that this is a restoring force because the force is
in the direction opposite the displacement. If we pull the glider to the right
(x is positive), the force is to the left (negative)—back toward equilibrium.

At equilibrium there ...,
1s no net force. :

VWWWW

Air track

[

A displacement causes the
spring to exert a force toward
the equilibrium position. -..,

=




Linear Restoring Forces 2/2

Consider a glider on a track without friction. The glider is
connected to the end of the track by a spring.

We displace the glider by Ax. The spring stretches, gets

Oscillation

AV

The point on the
. object that 1s
measured

stiffer, and wants to compress, which would pull the glider Air track
to the left. Just like our marble in a bowl, there is a force Il |l
that tries to pull it back toward its equilibrium position. : :
—A 0 A
N 1 I X
E., = kA% : "::L
53
Here k is the spring constant and depends on the spring. : le® " Thisis the
Notice due to the way we have defined direction that if we | o0 ® " [T equilibrium position.
compress the spring, Ax < 0, and if we stretch the spring, »:: ' x is the displacement
Ax > 0. : e, ol ' from this position.
If we write the above equation in terms of the component ‘ . .A° %,
of the spring force, we get the relationship between the | 3
restoring force and the displacement which is known as : P i ——
, . | o -..,,. Lhe graph of the
Hooke’s Law: | o® .A. : motion 1s sinusoidal.
(t) = A cos(wt) e '
E, = —kAx v)Et) —_—A(;())zir(i)(wt) TR e Maximum distance to the
» t left and to the right is A.

The negative sign tells us that this is a restoring force because the force is
in the direction opposite the displacement. If we pull the glider to the right
(x is positive), the force is to the left (negative)—back toward equilibrium.

a(t) = —Aw? cos(wt)



Vertical Motion of a Mass on a Spring

k Spring Spring
stretched stretched
/ A by AL by AL —y
Unstretched AL Fyp
spring m .
+ Fsp f__——_. ‘Fnet
\»
" m . s
The block hanging at rest N o - 3
A S w
has stretched the spring New equilibrium
by AL. This is the block’s A W position / Moving the
equilibrium position, the -~ Block?s block upward . . .

point with no net force. . ; :
equilibrium ... results in a net
position force downward.
mg

2F, = (Fsp)y +wy =kAL—mg =0 - AL = Kk When the block is at position y, the spring is compressed
by an amount AL — y:

The role of gravity is to determine where the
equilibrium position is, but it doesn’t affect the
restoring force for displacement from the equilibrium
position. Because it has a linear restoring force, a
mass on a vertical spring oscillates with simple
harmonic motion!

YE, = (Fsp)y +w, = k(AL —y) —mg = (kAL — mg) — ky
m

— - (Yme)-b=b




Example: Measuring the Spring Constant

A spring is hung vertically, and an object of mass m is attached to the

lower end of the spring and slowly lowered a distance d to the
equilibrium point. Find the value of the spring constant if the spring is -
displaced by 2.00 cm and the mass is 0.550 kg. % %
Solution: T
X =—-F,+FK=-mg+kd=0
mg (0.550kg)(9.81 ms?) l 5
k = = = 2.7 X 10°N m
d 0.200 m /m s
(a) (b) (c)

W////// AMIE Slops= % T gégg) g.g\cl)) g.c()rgc)J This is essentially Hooke’s experiment. Using a single spring, he

0.10011/0.98 10.925 "\ 5 rjed the mass and recorded the equilibrium position, plotted

S 404 0.200 | 1.96 |0.050
T : 0.300 | 294 10.076  Force vs. Displacement, found a linear relationship, and
!| rise  0.400 |3.92 |0.099 :
8 - : 0500 | 4.90 |0.127 ~measured the slope to be the spring constant.
s = !
LL 1
________ e Y= Yo 490N — 098 N
0 f 1 - m = =~ = 384‘3 N m
0 0050 0.100 x (m) x—x, 0.127m —0.025m /

W, Displacement= x (m)



Uniform Circular Motion is Simple Harmonic Motion!

w = 2nf =2n/T

—

x(t) = A cos(wt) x(t)
v(t) = —Aw sin(wt)

a(t) = —Aw? cos(wt)

Zn)  2MXax

Xmax = A 2 Aw = Xy (T T = Vmax

2 2
Aw? = x 2_7T _ 1 2T X max _ vr%wx —a
mENT Xmax r Xmax °

In uniform circular motion, the centripetal acceleration points toward the center.
When we look at just the x-component, that inward acceleration becomes the

restoring acceleration in simple harmonic motion.

v(t) =

a(t) = —a,,4, COS(2TTfT)

Xmax COS(2TTft)
—VUmax SIN2TTfT)

Uniform
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motion!
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Example: Measuring the sway of a tall building in the wind

The John Hancock Center in Chicago is 100 stories high. Strong winds can
cause the building to sway, as is the case with all tall buildings. On
particularly windy days, the top of the building oscillates with an amplitude of
40 cm (= 16 in) and a period of 7.7 s. What are the maximum speed and

acceleration of the top of the building?

Solution: We assume that the oscillation of the building is simple harmonic
motion with an amplitude of A = 0.40 m. The frequency can be computed

from the period:

2mA  2m(0.40 m)
Vmax = TpT T T o

= 0.33m/s

(2nA)2 , ,
V2 T 21 21
qa= —== = ( > A= (7—7S> (0.40 m) = 0.27 m/s>



Example: Sinusoidal Motion!

a. Findthe amplitude, frequency, and period of motion for an object vibrating at the end of a horizontal
spring if the equation for its position as a function of time is

T
x(t) = (0.250 m) cos (m t)

b. Find the maximum magnitude of the velocity and acceleration.
c. What are the position, velocity, and acceleration of the object after 1.00 s has elapsed?

Solution:
a A=0250m, 2nf=— > f=——=0.0625Hz, T=-=——s5=165
8.00 2%8.00 f  0.0625
b _ 2mA _ 21(0250m) _ o g0 _ vZax _ (0.098ms™1)? 0.038 ms—2
© Vmax = 77 T 16s m/s Amax ==~ = " ozs0m ms

¢. x(t =1.00s) = (0.250 m) cos (&(1.00 s)) =0.231m
v(t = 1.00s) = —(0.098 ms~2) sin (&(1.00 s)) = —0.038 ms™?!

a(t = 1.00s) = —(0.038 ms~2) cos (ﬁ(mo s)) = —0.035 ms™2



Energy in Simple Harmonic Motion 1/2

When a constant force is used to displace something, the work done is,

W = Fx
But a linear restoring force takes the form,
F(x) = kx

The force itself is a function of displacement and therefore is not constant!
Fr — Fy kx—0 1
W = Fppgx = S X =" xzzkx

The work is stored as potential energy in the spring

U —1k2
S_Zx

This is called elastic potential energy of a spring displaced a distance x from
equilibrium.

Notice that if the maximum distance that we pullit backis x = A, the maximum
potential energy stored in the spring is,

1
Umax = E kAZ

[~ Static

A

Stretched

In calculus,

X
W = J F(x")dx'
0

X 1
= j kx'dx' = =kx?
0 2




Energy in Simple Harmonic Motion 2/2 =0 oy

Ignoring friction, we have no energy loss, so the conservation of energy for this
system,

T 1 . 1 . 1
EO=Emv0 +§kA =5 mvy +§kxf

The system starts from rest v, = 0, solving for vf:

k
ve = |— (A% — x?
. \/M 2)
When the block passes back through the equilibrium position at x; = 0,

k k
vp= |[—A2=A |—
! m m

It reaches its maximum velocity because all of that stored potential energy in the
spring has now been transformed into kinetic energy,

1 k
Unax = EkA - Umax = A m

A —>
VWA =
o1 2 |
(a) Eoyhd
xr =20
f Uf—O

(b) E= Lrx? + L2

2 2
Recall earlier when we analyzed via uniform circular
motion,

21A
Vmax = T = 27'[fA

2ifA=A|=>|f= |=

~| I
|
S| =




Example: Total energy of a Spring.

A 0.500 kg object connected to a light spring with a spring constant of 20.0 N/m oscillates on a frictionless horizontal surface.
a. Calculate the total energy of the system.

Calculate the maximum speed of the object if the amplitude of motionis 3.00 cm.

[ Static

b
c. Whatis the velocity of the object when the displacementis 2.00 cm?
d

Compute the kinetic and potential energies of the system when the displacementis 2.00 cm.

Solution:

Stretched

a. E=KE+PE=0+_kA?= %(20.0%) (3.00 x 1072 m)2 = 9.00 x 1073)

2 -1
b. Ey=E;f— (KE+ PE)y=(KE+PE); >0+ %kA2 = %mvﬁwx +0 = Vhgy = % = Umax = 4 % = (0.03m) 2(())..;)0]\([)1:g ~

0.190m/s

— 4 [kg2 _ p2y = 4 [200NM7T 2 _ 21 —
c v= i\/m (A% —x2) = i\/o.soo "0 [(0.03m)? — (0.02m)?] = £0.141m/s

d KE = %mvz = %(0.500 kg)(0.141ms™1)2 =497 x1073]  PE = %kxz = %(20.0 Nm~1)(2.00 x 1072m)? = 4.00 x 1073/



The Pendulum

When displaced from equilibrium, the mass oscillates around the
equilibrium position. The restoring force is the force responsible for
bringing the mass back to its equilibrium position. Notice,

Xk =Fr —w, =ma, =0 - Fr =mgcos¥6

But this only tells us that T is the radial component of the weight, but
there is not motion in 7. Summing the forces in the tangential direction,

YF; = —w;= —mgsinf

This is the component of the net force responsible for bringing the mass
back toward its equilibrium position. If we use the small angle
approximation sin 8 = 6 which is valid for 8 < 10°, and recognize that
the arc lengthiss =10 = L6,

m
YFy = (Fpet)e = —mgsinf ~ —mg0 = — (—g)s

(a)

0 and s are
negative on
the left.

(b)

Center
of circle

w sin 6

Tangential

axis T~

The weight == ’

has a tangential
component
w; = —w sinf.

6 and s are
positive on
the right.

L

m

Arc length

The tension is directed
toward the center of
the circle, so it has no

tangential component.

(V?

w cos 8



Pendulum Motion

For a pendulum of length L displaced by an arc length s for small angles
8, the tangential restoring force is,

The restoring force
is proportional to s,
the displacement

from equilibrium.

mg 3

(Fpet)t = — TS
m
Recall for a mass spring system, F, = —kx, we found the frequency, s B
Arc length
1 |k
21\ m For the pendulum system described the
frequency and period:
(Fpet)t has a similar formto F, = —kx, ifk = mg/L,  Are independent of amplitude - just like

a mass-spring system.

1 [mg 1 g 1 L * Areindependent of mass —unlike a
f = = — T =—==2m |— -
2n\NmL 2n\NL f g mass-spring system.




Example: Lunar Pendulum

The free-fall acceleration on the moon is 1.62 ms™2. What is the length of a pendulum whose period on
the moon matches the period of 2.00 m long pendulum on the Earth?

Solution:

For a simple pendulum, the period,

L L 1.62
Ty=2m |M=2n [FE=T, > L, =Ly 2% = (2.00m)=— = 033m
Im 9E 9E 9.81



Example: Equation of Motion for a Simple Pendulum

A simple pendulum of length L and mass mis pulled to a small angle 8, (measured from the

vertical) and released fromrest att = 0. The angular position is given by,

0(t) = 6, cos(wt)
a. Write the above equation in terms of s(t), v(t), and a(t) interms of sy, L, g, t.
b. Find the maxkinetic energyintermsofm, g, L, and 6,. Where does it occur?

c. Findthe max potential energy interms of m, g, L, and 6,. Where does it occur?

Solution:
2
a.Usings =LO,and f = i\/%, and w = 2nf b. KE qp = %mvﬁwx — %m<50\/%> — %m(LHO)Z% — %mgLHZ
st so g P Occurs at the bottom of the swing.
— = cos (\/;t> — s(t) = s, cos (\/;t)

1

2 . Upay = ~kxZgy =~ (22) s2 =222 (19,)? = 2mgLb?
v(t)=—so\/%sin<\/%t> a(t)=—so<\/%) cos(\/%t) mars g e 2( L) 0 21 0 2 0

Occurs at the top of the swing.



Damped Oscillations

In the real world the oscillation of a pendulum would slowly decrease in
amplitude due to air resistance — an oscillation that runs down and
stops is called a damped oscillation. A result from calculus shows us,

xmax(t) = Ae~ /"

Where e = 2.718 is the base of the natural log and Ais the initial
amplitude (displacement). The constant 7 is called the time constant.
Whent = 1, the maximum displacement x,,,, has decreased to,

~ 0.374

A
Xmax(E=T) = Ae™ 1 = -

The oscillation amplitude has decreased to about 37% of its initial
value.

An oscillation that decays quickly has a smaller T and one that decays
slowly has a larger 7.

(a) x [nitially, there is a large difference
in the heights of successive peaks.

—A 4
(b) x ; g ;
A graph of x.x as a function of
A - time is an exponential decay.
\
Y N L..-".

ﬂ SO Xpa() =A™

#
well {1 f\
| \ —~ —~
0 [\ /\ n n_ﬁ—/\'/‘ t

Lk

U The time constant 7 is the time for
the maximum displacement to
- decay to 1/e of its initial value.




Example: Finding a clock’s decay time

The pendulum in a grandfather clock has a period of 1.00 s. If the
clock’s driving spring is allowed to run down, damping due to
friction will cause the pendulum to slow to a stop. If the time
constant for this decay is 300s, how long will it take for the
pendulum’s swing to be reduced to half its initial amplitude?

Solution:

—t/T -t/T 1
xmax(t) = Ae . Hmax(t) = Gpe = EHO

e_t/T = 00

1 It will take 208 s or about 3.5 min for the oscillations
ln(e_t/f) = In <_) to decay by half after the spring has run down.
2

t < 1, which makes sense. The time constant s the
time for the amplitude to decay to 37% of its initial
value; we are looking for the time to decay to 50% of
its initial value, which should be a shorter time. The

. . . time to decay to ¥z of the initial value, t = tIn 2 could
t=1ln2=(3005)In2 =208s be called the half-life. We will see this again next
quarter.

t
——Ilne = —In(2
_Ine n(2)




Stretching and Compressing Materials

(a) AL

Clamp

l. Your hand pulling ~ ™*s......i....
therod. ..

3....which
exert a
restoring

2. ... stretches the ...,

atomic springs . . . force.
Particle-like atoms

Spring-like bonds

(b) Data for the stretch of a 1.0-m-long,
1.0-cm-diameter steel rod

F (KN) ¢oneees 1 kN =1000N

15 1
10 4
5 4 Slope = k = 1.6 X 10" N/m
0 . . —AL (mm)

~

00 02 04 06 08 1.0

Change in the rod’s length -+

Consider a steel rod, we can model as made up of
spring-like bonds between atoms in steel and while
stiff can still be stretched or compressed — which
means it has a “spring constant”.

We expect this constant to be a function of several
factors:

AL Restoring force

A1/
Jorrs:

)

* Cross-sectional area, A: thick rod is harder to Area A )
stretch than a thin one. L
* Length, L: Long rod easier to stretch than a short
rod.
. . Material Young’s modulus (10'* N/m?
+ The material the rod is made from. Steel rod vs ateria oung’s modulus (10" Nim?)
rubber rod. _
Cast iron 20
Experimental result,
Steel 20
I YA Silicon 13
= 5
~opper 11
. . Aluminum 7
Where Y'is called Young’s modulus and is a property of
the material. Recall that a linear restoring force, like a Glass -
mass-spring system, follows F = kAx,
Concrete 3
F = ﬁ AL Wood (Douglas Fir) 1
L
The ratio of force to F AL The ratio of the change in
Cross-Section area is «ww.......y 1 = T S length to the original
called stress. length is called strain.




Example: Finding the Stretch of a Cable

A Foucault pendulum consists of a 120 kg steel ball that swings at the end
of a 6.0 m long steel cable. The cable has a diameter of 2.5 mm. When the

ball was first hung from the cable, by how much did the cable stretch?

Solution: Young’s modulus for steelis Y = 20 X 101N /m?. The cross-

sectional area of the cable,

A =mr? = 1(0.00125 m)? = 4.91 x 1076 m? Vo | Yoot GO
Cast iron 20
Now rearrange the equation for the cable’s restoring force, Steel 20 D

Silicon 13

F Y AL AL LF L(mg) (6-0 m)(].zo kg) (9-8 m/Sz) Copper 11

= _— = = ==

L AY AY (4.91 x 1076 m?)(20 x 1020 N/m?) Aluminum 7

= 0.0072m = 7.2mm o '
Concrete 3

Wood (Douglas Fir) 1




Physicist Spotlight:
Robert Hooke

Robert Hooke (1635-1703) was a renowned 17th-
century English scientist, inventor, and polymath,
known for his discovery of Hooke’s Law of
elasticity and pioneering work in microscopy,
where he coined the term "cell." As Curator of
Experiments for the Royal Society, he made
significant contributions to mechanics,
astronomy, and architecture, notably aiding in
London’s post-fire reconstruction. Hooke had a
famously bitter rivalry with Isaac Newton,
particularly over the inverse-square law of gravity
and optics, which overshadowed his legacy.
Despite this, Hooke’s wide-ranging contributions
cemented him as one of the era’s most influential
scientists.




From Pendulum to Particles: Why SHM Is Everywhere 1/2

We learned that
E,=—kx > F, +kx=0-ma, +kx=0

Another way we can write this by using more modern notation, a,, = X, and we already know its
solution, x(t),
k

mx + kx = 0, x(t) = A cos(wt + @), 0= |—

This is what we call an “equation of motion” and its solution. In classical physics we can know
exactly where something is and how fast it’s moving. That means x and momentum p are just
numbers you can measure simultaneously. Example: A pendulumbobatx = 2 cm,v = 0.5 m/s.

But in the quantum world particles behave like waves:

* You can describe a wave’s position or is momentum - but not exactly at once.
. . : . A
* Thisisthe Heisenberg Uncertainty Principle: AxAp = >

So “position” and “momentum” are no longer fixed numbers — they’re linked by wave behavior. To
describe this mathematically, we can’t treat x and p as simple variables anymore. We must use
operators!



From Pendulum to Particles: Why SHM Is Everywhere 2/2

mix + kx = 0, x(t) = Acos(wt + @), w = %
_ 1 "2 1 2 _ p* 1 2
E = omx +§kx - H(x,p) = %+Ekx
When we quantize something, we replace the x and y with operators. In the Hamiltonian,
H, it becomes the Hamiltonian operator,
A= i + lkA2
2m 2

When this operator acts on a wave function representing a particle, it yields the allowed
energy states, R
Hy = EY

This is called the time-independent Schrodinger equation. We now have our quantum
harmonic oscillator. Now, imagine not one oscillator - but a whole chain of them, each
connected to its neighbors. The result is a wave of excitations that can travel along the
chain.

Quantum Field Theory takes that same idea and extends it to all of space:

* Everypointin space is treated like a tiny harmonic oscillator.
* The “field” is a collection of infinitely many such oscillators.
* When one of them is excited, that excitation is what we call a particle.

In QFT, particles are just vibrations (quantum excitations) of underlying fields - exactly like
how a guitar string’s vibration is made of many tiny harmonic oscillations.
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