
Restoring Forces, Simple Harmonic Motion, and Elasticity

Chapter 10



Equilibrium and Oscillation

Consider a marble that is free to roll inside a spherical 
bowl.  The marble has an equilibrium position at the 
bottom of the bowl where it will rest with no net force. 
If you push the marble away from equilibrium, the 
marble’s weight leads to a net force directed back 
toward the equilibrium position.  We call this a 
restoring force. Notice that the magnitude of this 
force increases as the marble is moved further away 
from the equilibrium position.

If you pull the marble to the side and release it, it 
doesn’t just roll back to the bottom of the bowl and 
stay put. It keeps on moving, rolling up and down each 
side of the bowl, repeatedly moving through its 
equilibrium position. We call such a repetitive motion 
an oscillation. This oscillation is a result of an 
interplay between the restoring force and the marble’s 
inertia.



Frequency and Period

𝑇 =
1

𝑓

𝑥 𝑡 = 𝐴 cos 𝜔𝑡  
𝑣 𝑡 = −𝐴𝜔 sin(𝜔𝑡)

𝑎 𝑡 = −𝐴𝜔2 cos(𝜔𝑡)

Let 𝐴 = 𝜔 = 1 −−−→ 

A

-A

Ignore friction!

Motion that is 
sinusoidal is called:

Simple Harmonic 
Motion



Example: Understanding the motion of a glider on a spring
An air-track glider oscillates horizontally on a spring at a 
frequency of 0.50 Hz. Suppose the glider is pulled to the right 
of its equilibrium position by 12 cm and then released. Where 
will the glider be 1.0 s after its release? What is its velocity at 
this point?

Solution: The frequency is 𝑓 = 0.50 𝐻𝑧, therefore the period is,

𝑇 =
1

𝑓
=

1

0.50
𝑠 = 2.0 𝑠

The maximum amplitude, or displacement, is 12.0 cm, and it 
initially occurs at 𝑡 = 0 𝑠. 

1.0 s is exactly half of the period. As the graph of the motion 
shows, half of the cycle brings the glider to its left turning point, 
12 cm to the left of equilibrium. The velocity at this point is 
zero.



Linear Restoring Forces 1/2
Consider a glider on a track without friction. The glider is 
connected to the end of the track by a spring.
We displace the glider by Δ𝑥. The spring stretches, gets 
stiffer, and wants to compress, which would pull the glider 
to the left. Just like our marble in a bowl, there is a force 
that tries to pull it back toward its equilibrium position.

Ԧ𝐹𝑠𝑝 = 𝑘Δ Ԧ𝑥

Here 𝑘 is the spring constant and depends on the spring. 
Notice due to the way we have defined direction that if we 
compress the spring, Δ𝑥 < 0, and if we stretch the spring, 
Δ𝑥 > 0.
If we write the above equation  in terms of the component 
of the spring force, we get the relationship between the 
restoring force and the displacement which is known as 
Hooke’s Law:

𝐹𝑥 = −𝑘Δ𝑥
ො𝑥

It is linear because 
Δx is to the 1 power.



Linear Restoring Forces 2/2
Consider a glider on a track without friction. The glider is 
connected to the end of the track by a spring.
We displace the glider by Δ𝑥. The spring stretches, gets 
stiffer, and wants to compress, which would pull the glider 
to the left. Just like our marble in a bowl, there is a force 
that tries to pull it back toward its equilibrium position.

Ԧ𝐹𝑠𝑝 = 𝑘Δ Ԧ𝑥

Here 𝑘 is the spring constant and depends on the spring. 
Notice due to the way we have defined direction that if we 
compress the spring, Δ𝑥 < 0, and if we stretch the spring, 
Δ𝑥 > 0.
If we write the above equation  in terms of the component 
of the spring force, we get the relationship between the 
restoring force and the displacement which is known as 
Hooke’s Law:

𝐹𝑥 = −𝑘Δ𝑥
ො𝑥

𝑥 𝑡 = 𝐴 cos 𝜔𝑡  
𝑣 𝑡 = −𝐴𝜔 sin(𝜔𝑡)

𝑎 𝑡 = −𝐴𝜔2 cos(𝜔𝑡)



Vertical Motion of a Mass on a Spring

∑𝐹𝑦 = 𝐹𝑠𝑝 𝑦
+ 𝑤𝑦 = 𝑘Δ𝐿 − 𝑚𝑔 = 0 → Δ𝐿 =

𝑚𝑔

𝑘

New equilibrium 
position

When the block is at position 𝑦, the spring is compressed 
by an amount Δ𝐿 − 𝑦:

∑𝐹𝑦 = 𝐹𝑠𝑝 𝑦
+ 𝑤𝑦 = 𝑘 Δ𝐿 − 𝑦 − 𝑚𝑔 = 𝑘Δ𝐿 − 𝑚𝑔 − 𝑘𝑦

= 𝑘
𝑚𝑔

𝑘
− 𝑚𝑔 − 𝑘𝑦 = −𝑘𝑦

The role of gravity is to determine where the 
equilibrium position is, but it doesn’t affect the 
restoring force for displacement from the equilibrium 
position. Because it has a linear restoring force, a 
mass on a vertical spring oscillates with simple 
harmonic motion!



Example: Measuring the Spring Constant
A spring is hung vertically, and an object of mass m is attached to the 
lower end of the spring and slowly lowered a distance d to the 
equilibrium point.  Find the value of the spring constant if the spring is 
displaced by 2.00 cm and the mass is 0.550 kg. 

Solution:
∑𝐹𝑦 = −𝐹𝑤 + 𝐹𝑠 = −𝑚𝑔 + 𝑘𝑑 = 0

𝑘 =
𝑚𝑔

𝑑
=

(0.550𝑘𝑔)(9.81 𝑚𝑠2)

0.200 𝑚
= 2.7 × 102𝑁/𝑚

This is essentially Hooke’s experiment.  Using a single spring, he 
varied the mass and recorded the equilibrium position, plotted 
Force vs. Displacement, found a linear relationship, and 
measured the slope to be the spring constant.

𝑚 =
𝑦 − 𝑦0

𝑥 − 𝑥0
≈

4.90 𝑁 − 0.98 𝑁

0.127 𝑚 − 0.025 𝑚
= 38.43 𝑁/𝑚



Uniform Circular Motion is Simple Harmonic Motion!

𝑥 𝑡 = 𝐴 cos 𝜔𝑡  
𝑣 𝑡 = −𝐴𝜔 sin(𝜔𝑡)

𝑎 𝑡 = −𝐴𝜔2 cos(𝜔𝑡)

𝑥 𝑡 = 𝑥𝑚𝑎𝑥 cos 2𝜋𝑓𝑡  
𝑣 𝑡 = −𝑣𝑚𝑎𝑥 sin(2𝜋𝑓𝑡)
𝑎 𝑡 = −𝑎𝑚𝑎𝑥 cos(2𝜋𝑓𝑡)

𝜔 = 2𝜋𝑓 = 2𝜋/𝑇

𝑥𝑚𝑎𝑥 = 𝐴 → 𝐴𝜔 = 𝑥𝑚𝑎𝑥

2𝜋

𝑇
=

2𝜋𝑥𝑚𝑎𝑥

𝑇
= 𝑣𝑚𝑎𝑥

𝐴𝜔2 = 𝑥𝑚𝑎𝑥

2𝜋

𝑇

2

=
1

𝑥𝑚𝑎𝑥

2𝜋𝑥𝑚𝑎𝑥

𝑇

2

=
𝑣𝑚𝑎𝑥

2

𝑥𝑚𝑎𝑥
= 𝑎0

𝑣 =
2𝜋𝑟

𝑇

𝑎𝑐 =
𝑣2

𝑟

Uniform 
circular 
motion!

In uniform circular motion, the centripetal acceleration points toward the center. 
When we look at just the x-component, that inward acceleration becomes the 
restoring acceleration in simple harmonic motion.



Example: Measuring the sway of a tall building in the wind
The John Hancock Center in Chicago is 100 stories high. Strong winds can 
cause the building to sway, as is the case with all tall buildings. On 
particularly windy days, the top of the building oscillates with an amplitude of 
40 𝑐𝑚 (≈ 16 𝑖𝑛) and a period of 7.7 s. What are the maximum speed and 
acceleration of the top of the building?

Solution:  We assume that the oscillation of the building is simple harmonic 
motion with an amplitude of 𝐴 = 0.40 𝑚. The frequency can be computed 
from the period:

𝑣𝑚𝑎𝑥 =
2𝜋𝐴

𝑇
=

2𝜋 0.40 𝑚

7.7𝑠
= 0.33 𝑚/𝑠

𝑎 =
𝑣𝑚𝑎𝑥

2

𝐴
=

2𝜋𝐴
𝑇

2

𝐴
=

2𝜋

𝑇

2

𝐴 =
2𝜋

7.7𝑠

2

0.40 𝑚 = 0.27 𝑚/𝑠2



Example: Sinusoidal Motion!
a. Find the amplitude, frequency, and period of motion for an object vibrating at the end of a horizontal 

spring if the equation for its position as a function of time is
𝑥 𝑡 = 0.250 𝑚 cos

𝜋

8.00
𝑡

b. Find the maximum magnitude of the velocity and acceleration. 
c. What are the position, velocity, and acceleration of the object after 1.00 s has elapsed?

Solution: 

a. 𝐴 = 0.250 𝑚,  2𝜋𝑓 =
𝜋

8.00
 →  𝑓 =

1

2∗8.00
= 0.0625 𝐻𝑧,  𝑇 =

1

𝑓
=

1

0.0625
𝑠 = 16 𝑠

b. 𝑣𝑚𝑎𝑥 =
2𝜋𝐴

𝑇
=

2𝜋 0.250 𝑚

16 𝑠
= 0.098 𝑚/𝑠          𝑎𝑚𝑎𝑥 =

𝑣𝑚𝑎𝑥
2

𝐴
=

0.098 𝑚𝑠−1 2

0.250 𝑚
= 0.038 𝑚𝑠−2

c. 𝑥 𝑡 = 1.00𝑠 = 0.250 𝑚 cos
𝜋

8.00
1.00 𝑠 = 0.231 𝑚

       𝑣 𝑡 = 1.00𝑠 = − 0.098 𝑚𝑠−2 sin
𝜋

8.00
1.00 𝑠 = −0.038 𝑚𝑠−1

       𝑎 𝑡 = 1.00𝑠 = − 0.038 𝑚𝑠−2 cos
𝜋

8.00
1.00 𝑠 = −0.035 𝑚𝑠−2 



When a constant force is used to displace something, the work done is,
𝑊 = 𝐹𝑥

But a linear restoring force takes the form,
𝐹(𝑥) = 𝑘𝑥

The force itself is a function of displacement and therefore is not constant! 

𝑊 = 𝐹𝑎𝑣𝑔𝑥 =
𝐹𝑓 − 𝐹0

2
𝑥 =

𝑘𝑥 − 0

2
𝑥 =

1

2
𝑘𝑥2

The work is stored as potential energy in the spring

𝑈𝑠 =
1

2
𝑘𝑥2

This is called elastic potential energy of a spring displaced a distance x from 
equilibrium.  

Notice that if the maximum distance that we pull it back is 𝑥 = 𝐴, the maximum 
potential energy stored in the spring is,

𝑈𝑚𝑎𝑥 =
1

2
𝑘𝐴2

Energy in Simple Harmonic Motion 1/2

In calculus,

𝑊 = න
0

𝑥

𝐹(𝑥′) 𝑑𝑥′

= න
0

𝑥

𝑘𝑥′𝑑𝑥′ =
1

2
𝑘𝑥2



Ignoring friction, we have no energy loss, so the conservation of energy for this 
system,

𝐸0 =
1

2
𝑚𝑣0

2 +
1

2
𝑘𝐴2 =

1

2
𝑚𝑣𝑓

2 +
1

2
𝑘𝑥𝑓

2

The system starts from rest 𝑣0 = 0, solving for 𝑣𝑓:

𝑣𝑓 =
𝑘

𝑚
(𝐴2 − 𝑥𝑓

2)

When the block passes back through the equilibrium position at 𝑥𝑓 = 0,

𝑣𝑓 =
𝑘

𝑚
𝐴2 = 𝐴

𝑘

𝑚

It reaches its maximum velocity because all of that stored potential energy in the 
spring has now been transformed into kinetic energy,

𝑈𝑚𝑎𝑥 =
1

2
𝑘𝐴2  →  𝑣𝑚𝑎𝑥 = 𝐴

𝑘

𝑚

Energy in Simple Harmonic Motion 2/2

𝑥𝑓 = 0
𝑣𝑓 = 0

Recall earlier when we analyzed via uniform circular 
motion, 

𝑣𝑚𝑎𝑥 =
2𝜋𝐴

𝑇
= 2𝜋𝑓𝐴

2𝜋𝑓𝐴 = 𝐴
𝑘

𝑚
→  𝑓 =

1

2𝜋

𝑘

𝑚

𝑇 =
1

𝑓
= 2𝜋

𝑚

𝑘



A 0.500 kg object connected to a light spring with a spring constant of 20.0 N/m oscillates on a frictionless horizontal surface. 

a. Calculate the total energy of the system.

b. Calculate the maximum speed of the object if the amplitude of motion is 3.00 cm.

c. What is the velocity of the object when the displacement is 2.00 cm?

d. Compute the kinetic and potential energies of the system when the displacement is 2.00 cm.

Solution: 

a. 𝐸 = 𝐾𝐸 + 𝑃𝐸 = 0 +
1

2
𝑘𝐴2 =

1

2
20.0

𝑁

𝑚
3.00 × 10−2 𝑚 2 = 9.00 × 10−3𝐽

b. 𝐸0 = 𝐸𝑓 → 𝐾𝐸 + 𝑃𝐸 0 = 𝐾𝐸 + 𝑃𝐸 𝑓 → 0 +
1

2
𝑘𝐴2 =

1

2
𝑚𝑣𝑚𝑎𝑥

2 + 0 → 𝑣𝑚𝑎𝑥
2 =

𝑘𝐴2

𝑚
→ 𝑣𝑚𝑎𝑥 = 𝐴

𝑘

𝑚
= 0.03 𝑚

20.0 𝑁𝑚−1

0.500 𝑘𝑔
≈

0.190 𝑚/𝑠

c. 𝑣 = ±
𝑘

𝑚
(𝐴2 − 𝑥2) = ±

20 𝑁𝑚−1

0.500 𝑘𝑔
[ 0.03 𝑚 2 − 0.02 𝑚 2] = ±0.141 𝑚/𝑠

d. 𝐾𝐸 =
1

2
𝑚𝑣2 =

1

2
0.500 𝑘𝑔 0.141 𝑚𝑠−1 2 = 4.97 × 10−3 𝐽 𝑃𝐸 =

1

2
𝑘𝑥2 =

1

2
20.0 𝑁𝑚−1 2.00 × 10−2𝑚 2 = 4.00 × 10−3𝐽

Example:  Total energy of a Spring.



The Pendulum
When displaced from equilibrium, the mass oscillates around the 
equilibrium position.  The restoring force  is the force responsible for 
bringing the mass back to its equilibrium position.  Notice,

∑𝐹𝑟 = 𝐹𝑇𝑟
− 𝑤𝑟 = 𝑚𝑎𝑟 = 0 → 𝐹𝑇 = 𝑚𝑔 cos 𝜃

But this only tells us that T is the radial component of the weight, but 
there is not motion in Ƹ𝑟. Summing the forces in the tangential direction,

∑𝐹𝑡 = −𝑤𝑡= −𝑚𝑔 sin 𝜃

This is the component of the net force responsible for bringing the mass 
back toward its equilibrium position. If we use the small angle 
approximation sin 𝜃 ≈ 𝜃 which is valid for 𝜃 < 10𝑜, and recognize that 
the arc length is 𝑠 = 𝑟𝜃 = 𝐿𝜃,

∑𝐹𝑡 = 𝐹𝑛𝑒𝑡 𝑡 = −𝑚𝑔 sin 𝜃 ≈ −𝑚𝑔𝜃 = −
𝑚𝑔

𝐿
𝑠



Pendulum Motion
For a pendulum of length 𝐿 displaced by an arc length 𝑠 for small angles 
𝜃, the tangential restoring force is,

𝐹𝑛𝑒𝑡 𝑡 = −
𝑚𝑔

𝐿
𝑠

Recall for a mass spring system, 𝐹𝑥 = −𝑘𝑥, we found the frequency, 

𝑓 =
1

2𝜋

𝑘

𝑚

𝐹𝑛𝑒𝑡 𝑡 has a similar form to 𝐹𝑥 = −𝑘𝑥, if 𝑘 = 𝑚𝑔/𝐿,

𝑓 =
1

2𝜋

𝑚𝑔

𝑚𝐿
=

1

2𝜋

𝑔

𝐿
 𝑇 =

1

𝑓
= 2𝜋

𝐿

𝑔

For the pendulum system described the 
frequency and period:

• Are independent of amplitude – just like 
a mass-spring system.

• Are independent of mass – unlike a 
mass-spring system.



Example:  Lunar Pendulum 
The free-fall acceleration on the moon is 1.62 𝑚𝑠−2. What is the length of a pendulum whose period on 
the moon matches the period of 2.00 m long pendulum on the Earth?

Solution: 

For a  simple pendulum, the period , 

𝑇 = 2𝜋
𝐿

𝑔

𝑇𝑀 = 2𝜋
𝐿𝑀

𝑔𝑀
= 2𝜋

𝐿𝐸

𝑔𝐸
= 𝑇𝐸  →  𝐿𝑀 = 𝐿𝐸

𝑔𝑀

𝑔𝐸
= 2.00 𝑚

1.62

9.81
= 0.33 𝑚



Example: Equation of Motion for a Simple Pendulum
A simple pendulum of length L and mass m is pulled to a small angle 𝜃0 (measured from the 

vertical) and released from rest at 𝑡 = 0. The angular position is given by,

𝜃 𝑡 = 𝜃0 cos(𝜔𝑡)

a. Write the above equation in terms of 𝑠 𝑡 , 𝑣 𝑡 , and 𝑎(𝑡) in terms of 𝑠0, 𝐿, 𝑔, 𝑡.

b. Find the max kinetic energy in terms of 𝑚, 𝑔, 𝐿, 𝑎𝑛𝑑 𝜃0. Where does it occur?

c. Find the max potential energy in terms of 𝑚, 𝑔, 𝐿, 𝑎𝑛𝑑 𝜃0. Where does it occur?

Solution:

a. Using 𝑠 = 𝐿𝜃, and 𝑓 =
1

2𝜋

𝑔

𝐿
, and 𝜔 = 2𝜋𝑓

𝑠 𝑡

𝐿
=

𝑠0

𝐿
cos

𝑔

𝐿
𝑡  →  𝑠 𝑡 = 𝑠0 cos

𝑔

𝐿
𝑡  

𝑣 𝑡 = −𝑠0
𝑔

𝐿
sin

𝑔

𝐿
𝑡                𝑎 𝑡 = −𝑠0

𝑔

𝐿

2

cos
𝑔

𝐿
𝑡

b. 𝐾𝐸𝑚𝑎𝑥 =
1

2
𝑚𝑣𝑚𝑎𝑥

2 =
1

2
𝑚 𝑠0

𝑔

𝐿

2

=
1

2
𝑚 𝐿𝜃0

2 𝑔

𝐿
=

1

2
𝑚𝑔𝐿𝜃2

Occurs at the bottom of the swing.

c. 𝑈𝑚𝑎𝑥 =
1

2
𝑘𝑥𝑚𝑎𝑥

2 =
1

2

𝑚𝑔

𝐿
𝑠0

2 =
1

2

𝑚𝑔

𝐿
𝐿𝜃0

2 =
1

2
𝑚𝑔𝐿𝜃0

2

Occurs at the top of the swing.



Damped Oscillations
In the real world the oscillation of a pendulum would slowly decrease in 
amplitude due to air resistance – an oscillation that runs down and 
stops is called a damped oscillation. A result from calculus shows us,

𝑥𝑚𝑎𝑥 𝑡 = 𝐴𝑒−𝑡/𝜏

Where 𝑒 ≈ 2.718 is the base of the natural log and Ais the initial 
amplitude (displacement). The constant 𝜏 is called the time constant.  
When 𝑡 = 𝜏, the maximum displacement 𝑥𝑚𝑎𝑥 has decreased to, 

𝑥𝑚𝑎𝑥 𝑡 = 𝜏 = 𝐴𝑒−1 =
𝐴

𝑒
≈ 0.37𝐴

The oscillation amplitude has decreased to about 37% of its initial 
value.

An oscillation that decays quickly has a smaller 𝜏 and one that decays 
slowly has a larger 𝜏.



Example: Finding a clock’s decay time
The pendulum in a grandfather clock has a period of 1.00 s. If the 
clock’s driving spring is allowed to run down, damping due to 
friction will cause the pendulum to slow to a stop. If the time 
constant for this decay is 300s, how long will it take for the 
pendulum’s swing to be reduced to half its initial amplitude?
Solution:

𝑥𝑚𝑎𝑥 𝑡 = 𝐴𝑒−𝑡/𝜏  →  𝜃𝑚𝑎𝑥 𝑡 = 𝜃0𝑒−𝑡/𝜏 =
1

2
𝜃0

𝑒−𝑡/𝜏 = 𝜃0

ln 𝑒−𝑡/𝜏 = ln
1

2

−
𝑡

𝜏
ln 𝑒 = −ln(2)

𝑡 = 𝜏 ln 2 = 300 𝑠 ln 2 = 208 𝑠

It will take 208 s or about 3.5 min for the oscillations 
to decay by half after the spring has run down.

𝑡 < 𝜏, which makes sense. The time constant is the 
time for the amplitude to decay to 37% of its initial 
value; we are looking for the time to decay to 50% of 
its initial value, which should be a shorter time. The 
time to decay to ½  of the initial value, 𝑡 = 𝜏 𝑙𝑛 2 could 
be called  the half-life.  We will see this again next 
quarter.



Stretching and Compressing Materials
Consider a steel rod, we can model as made up of 
spring-like bonds between atoms in steel and while 
stiff can still be stretched or compressed – which 
means it has a “spring constant”.

We expect this constant to be a function of several 
factors:

• Cross-sectional area, A: thick rod is harder to 
stretch than a thin one.

• Length, L: Long rod easier to stretch than a short 
rod.

• The material the rod is made from. Steel rod vs 
rubber rod.

Experimental result,

𝑘 =
𝑌𝐴

𝐿

Where Y is called Young’s modulus and is a property of 
the material.  Recall that a linear restoring force, like a 
mass-spring system, follows 𝐹 = 𝑘Δ𝑥, 

𝐹 =
𝑌𝐴

𝐿
Δ𝐿

𝐹

𝐴
= 𝑌

Δ𝐿

𝐿



Example: Finding the Stretch of a Cable
A Foucault pendulum consists of a 120 kg steel ball that swings at the end 

of a 6.0 m long steel cable. The cable has a diameter of 2.5 mm. When the 

ball was first hung from  the cable, by how much did the cable stretch?

Solution: Young’s modulus for steel is 𝑌 = 20 × 1010𝑁/𝑚2.  The cross-

sectional area of the cable,

𝐴 = 𝜋𝑟2 = 𝜋 0.00125 𝑚 2 = 4.91 × 10−6 𝑚2

Now rearrange the equation for the cable’s restoring force,

𝐹 = 𝑌
Δ𝐿

𝐿
→ Δ𝐿 =

𝐿𝐹

𝐴𝑌
=

𝐿(𝑚𝑔)

𝐴𝑌
=

(6.0 𝑚)(120 𝑘𝑔)(9.8 𝑚/𝑠2)

(4.91 × 10−6 𝑚2)(20 × 1020 𝑁/𝑚2)

= 0.0072 𝑚 = 7.2 𝑚𝑚



Physicist Spotlight: 
Robert Hooke

Robert Hooke (1635–1703) was a renowned 17th-
century English scientist, inventor, and polymath, 
known for his discovery of Hooke’s Law of 
elasticity and pioneering work in microscopy, 
where he coined the term "cell." As Curator of 
Experiments for the Royal Society, he made 
significant contributions to mechanics, 
astronomy, and architecture, notably aiding in 
London’s post-fire reconstruction. Hooke had a 
famously bitter rivalry with Isaac Newton, 
particularly over the inverse-square law of gravity 
and optics, which overshadowed his legacy. 
Despite this, Hooke’s wide-ranging contributions 
cemented him as one of the era’s most influential 
scientists.



From Pendulum to Particles: Why SHM Is Everywhere 1/2
We learned that 

𝐹𝑥 = −𝑘𝑥 → 𝐹𝑥 + 𝑘𝑥 = 0 → 𝑚𝑎𝑥 + 𝑘𝑥 = 0

Another way we can write this by using more modern notation, 𝑎𝑥 =  ሷ𝑥, and we  already know its 
solution, 𝑥(𝑡),

𝑚 ሷ𝑥 + 𝑘𝑥 = 0,  𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜑 ,  𝜔 =
𝑘

𝑚

This is what we call an “equation of motion” and its solution. In classical physics we can know 
exactly where something is and how fast it’s moving. That means 𝑥 and momentum 𝑝 are just 
numbers you can measure simultaneously.  Example: A pendulum bob at 𝑥 = 2 𝑐𝑚, 𝑣 = 0.5 𝑚/𝑠.

But in the quantum world particles behave like waves:

• You can describe a wave’s position or is momentum – but not exactly at once.

• This is the Heisenberg Uncertainty Principle: Δ𝑥Δ𝑝 ≥
ℏ

2
. 

So “position” and “momentum” are no longer fixed numbers – they’re linked by wave behavior. To 
describe this mathematically, we can’t treat 𝑥 and 𝑝 as simple variables anymore.  We must use 
operators!



From Pendulum to Particles: Why SHM Is Everywhere 2/2

𝑚 ሷ𝑥 + 𝑘𝑥 = 0,  𝑥 𝑡 = 𝐴 cos 𝜔𝑡 + 𝜑 ,  𝜔 =
𝑘

𝑚

𝐸 =
1

2
𝑚 ሶ𝑥2 +

1

2
𝑘𝑥2 → 𝐻 𝑥, 𝑝 =

𝑝2

2𝑚
+

1

2
𝑘𝑥2

When we quantize something, we replace the 𝑥 and 𝑦 with operators. In the Hamiltonian, 
H, it becomes the Hamiltonian operator, 

෡𝐻 =
Ƹ𝑝2

2𝑚
+

1

2
𝑘 ො𝑥2

When this operator acts on a wave function representing a particle, it yields the allowed 
energy states,

෡𝐻𝜓 = 𝐸𝜓

This is called the time-independent Schrodinger equation. We now have our quantum 
harmonic oscillator. Now, imagine not one oscillator - but a whole chain of them, each 
connected to its neighbors. The result is a wave of excitations that can travel along the 
chain.

Quantum Field Theory takes that same idea and extends it to all of space:

• Every point in space is treated like a tiny harmonic oscillator.

• The “field” is a collection of infinitely many such oscillators.

• When one of them is excited, that excitation is what we call a particle.

In QFT, particles are just vibrations (quantum excitations) of underlying fields - exactly like 
how a guitar string’s vibration is made of many tiny harmonic oscillations.


	Slide 1: Restoring Forces, Simple Harmonic Motion, and Elasticity
	Slide 2: Equilibrium and Oscillation
	Slide 3: Frequency and Period
	Slide 4: Example: Understanding the motion of a glider on a spring
	Slide 5: Linear Restoring Forces 1/2
	Slide 6: Linear Restoring Forces 2/2
	Slide 7: Vertical Motion of a Mass on a Spring
	Slide 8: Example: Measuring the Spring Constant
	Slide 9: Uniform Circular Motion is Simple Harmonic Motion!
	Slide 10: Example: Measuring the sway of a tall building in the wind
	Slide 11: Example: Sinusoidal Motion!
	Slide 12: Energy in Simple Harmonic Motion 1/2
	Slide 13: Energy in Simple Harmonic Motion 2/2
	Slide 14: Example:  Total energy of a Spring.
	Slide 15: The Pendulum
	Slide 16: Pendulum Motion
	Slide 17: Example:  Lunar Pendulum 
	Slide 18: Example: Equation of Motion for a Simple Pendulum
	Slide 19: Damped Oscillations
	Slide 20: Example: Finding a clock’s decay time
	Slide 21: Stretching and Compressing Materials
	Slide 22: Example: Finding the Stretch of a Cable
	Slide 23: Physicist Spotlight: Robert Hooke
	Slide 24: From Pendulum to Particles: Why SHM Is Everywhere 1/2
	Slide 25: From Pendulum to Particles: Why SHM Is Everywhere 2/2

